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FINITE ELEMENT ANALYSIS OF 

AEROACOUSTIC  JET-FLAP FLOWS 

A.J. Baker and P.D.  Manhardt 

Computational Mechanics Consultants 

Knoxvi 11 e , TN 

SUMMARY 

A computational analysis has  been performed on the  steady,  turbulent 
aerodynamic flowfields  associated  with a basic  jet-blown  flap  configuration. 
For regions  devoid of  flow separation, a parabolic approximation t o  the 
governing  time-averaged  Navier-Stokes  equations is   appl ied,  which renders 
solution amenable t o  a downstream marching technique. Numerical resul ts   are  
presented for  the flow on the symmetry plane of a rectangular  slot-nozzle 
planar j e t   f l a p  geometry,  including  detailed  prediction of flowfield  evolution 
within  the  secondary mixing region  immediately downstream of the   f lap   t ra i l ing  
edge. Using a two equation  turbulence  kinetic energy closure model , the 
numerical results  predict  rapid  generation and decay of large  spatial  gradients 
i n  mean and correlated  fluctuating  velocity components within  the immediate 
wake region.  Modifications t o  the  t ra i l ing edge turbulent flow structure,   as 
induced by a simulated porous surface  treatment of the  flap,  are  evaluated 
using a hybrid  turbulence  closure model. A numerical analysis of the  recircu- 
la t ing flow  within a representative  discrete  slot  i n  the  surface  is  evaluated 
using a complete two-dimensional,  time-averaged  Navier-Stokes  equation s e t .  
The parabolic  analysis  for a smooth f l a p   i s  extended i n  an introductory manner 
to  a f i n i t e  span three-dimensional  jet-flap  flow. The resul ts  of the  stedp 
are  presented  in  this  report. 

INTRODUCTION 

The use of d i r ec t ed   j e t  flows i s  common i n  the  design of aerodynamic l i f t  
systems. Examples include the leading edge s l a t - t r a i l i ng  edge flap  configura- 
tions character is t ic  of current  transport  technology,  as well as  the lower 
and/or  upper-surface blown flap  geometries  considered  for STOL a i r c r a f t .  In 
each instance, h i g h  momentum flow is directed  generally  tangential  to an aero- 
dynamic surface. Such l i f t  augmentation  systems resu l t  i n  noise  sources  being 
generated by flow interaction w i t h  the l i f t ing  surface and equilibration w i t h  
the  free  stream. W i t h  the  progress made i n  noise  reduction of propulsion 
system components, the  noise  floor  associated w i t h  the  next  generation of pro- 
pulsive l i f t  systems may well be constrained by the aeroacoustics of the 
fundamental je t - f lap  f lowfield.  



Experimental tes t ing of elementary  configurations has been  employed to  
characterize  the  aeroacoustic  sources'associated with': the .bas ic .   j e t - f lap  :flow 
i n  an upper surface blowing (USB) orientation. Gruschka  and Schrecker ( r e f .  1) 
evaluated a USB geometry comprised of a rectangular j e t  i ssuing over a planar 
f lap w i t h  sharp t r a i l i ng  edge, and compared feasured  noise  intensities w i t h  
free  jet   results.   Their  data  bear  out  the U law for  f r e e   j e t s ,   f i r s t  noted 
by Lighthjll  (ref.2,3), and determined a 6 t h  power  law for  the  f lap  cases.  
The secondary  flow mixing  region, immediately downstream of the  f lap t r a i l i n g  
edge contained a dominant noise  source. Reshotko e t  a1 ., ( r e f .  4 )  tested a 
small USB model having a def lected  c i rcular   je t  issuing over a wing section, 
to  determine the.acoustic  efficiency o f  the w i n g  as a noise  shield. The 
resul ts  showed increased  effectiveness w i t h  increasing frequency similar t o  
the  results of  Hayden ( r e f .  5 ) .  An extensive  investigation of  aerodynamic 
and acoustic phenomena o f  a s l o t  nozzle and variable  length  straight f l a p  
was performed by Patterson e t  al. ( r e f .  6 ) .  They measured free  f ie ld   acoust ic  
response,  reverberation chamber acoustics, and ut i l ized h o t  film anemometry 
and flow visualization  techniques t o  correlate  noise w i t h  flow perturbation 
phenomena. For the geometry tes ted,  a maximum sound  power level (SPL) 
occurred for a f l a p  length of  approximately 10 s lot   heights .  An ins tab i l i ty  
condition  appeared  for this case,  as  verified by flow v i s u a l i z a t i o n  and h o t  
film data. Longer f l a p  lengths were determined t o  produce noise  levels 
closer t o  t h e   f r e e   j e t  measurements. Becker and Maus ( r e f .  7 )  report   results 
of a comprehensive experimental  project on the  rectangular  slot  nozzle- 
p l ana r  f lap geometry similar  to  reference 1. Using near and fa r f ie ld  micro- 
phone locations and a cross-correlation  technique,  they determined two extrema 
i n  acoustic  source  strength w i t h i n  the secondary m i x i n g  region, one located 
directly  adjacent t o  the f l a p  t r a i l i ng  edge.  Detailed mean and fluctuating 
velocity  correlation measurements indicate  the  turbulence  structure i n  both 
m i x i n g  regions i s  highly  anisotropic, and t h a t  sharp peaks i n  turbulence 
quantit ies occurred immediately downstream of the t r a i l i n g  edge. These 
rapidly  dispersed  as  the flow proceded i n t o  the wake. 

These results  generally  indicate  that a large  portion of the  fly-over 
noise  associated w i t h  a USB equipped aircraf t   wi l l  be generated w i t h i n  the 
primary and secondary mix ing  regions. For the  la t ter ,   the   turbulent  mixing  
flow and resultant  acoustic  source  distribution i s  strongly dependent upon 
the boundary layer flow  immediately  preceeding the   t ra i l ing  edge ( c f .  , re f .  8 ) .  
Hayden, e t  al.,(ref. 5, 9)  evaluated a variable impedance flap  surface  to 
reduce  the  noise  intensity  associated w i t h  a USB configuration.  Penalties 
encountered i n  aerodynamic  performance  of the  early systems were significantly 
reduced i n  more recent  configurations, employing a cavity-backed porous mesh 
surface  (ref.  l o ) ,  while  retaining  the  favorable broadband farfield  noise 
reduction o f  3 t o  10 dB over a wide frequency  range and for  large, t u r n i n g  
angle. Many additional  studies on  powered  and  unpowered configuration  noise 
measuremehts, as a function of  flow  parameters are  reported  (ref. 11-18) 
including  standard  configurations, and various aerodymamic  components such 
as blown f laps ,   cav i t ies ,  d-type  surfaces, t r a i l i n g  edge interaction, and 
three-dimensional effects .  
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The resu l t s  of these  studies  confirm  the dominance of t he   j e t   f l ap  flows 
as  noise  sources. A theoretical  analysis would  be directed a t  characterization 
of the basic mechanisms, and  would require  detailed  information  regarding  the 
associated  turbulent  flowfield  structure,  particularly i n  the wake region down- 
stream of the  f lap  t ra i l ing edge. Assuming the  appropriateness of time-averag- 
i n g ,  such data is  potentially  determinable by numerical solution of appropriate 
subsystems  of the governing  Navier-Stokes equations. For attached aerodynamic 
flows,  the  appropriate system i s   t h e  boundary layer  equation  set,  the numerical 
solution t o  which i s   rou t ine ly  accomplished us ing  mixing  length  theory  for tur- 
bulence closure and any o f  several  available  solution  algorithms. For free- 
mixing shear  layer  flows,  as  occur i n  the primary and  downstream secondary mix- 
ing regions,  the boundary layer   se t  coupled w i t h  a turbulence  kinetic  energy 
closure model and algebraic  length  scale, i s  appropriate  for a symmetric geo- 
metry. The  wake flow w i t h i n  the immediate vicini ty  of the   t ra i l ing  edge i s  
s ignif icant ly  more complex, and a complete analysis  in  the  general  case would 
require use of  the  full Navier-Stokes  equation s e t .  Such analysis could be 
extremely  expensive, however, and simplifications have  been proposed. For 
example, Melnik  and Chow ( re f .  19) employ a matched asymptotic  analysis t o  
characterize  the  trail ing edge flowfield i n  a t r i p l e  deck s t ructure   for  lami- 
nar  flows, w i t h  extension t o  turbulent flows for  a symmetric geometry ( r e f .  
19, 20) .  Various forms of  the boundary layer  equation  set have  been  employed 
as well for  symmetric geometries ( c . f . ,   r e f .  2 1 ) .  Numerical predictions  for 
turbulent  flows have  been s tar ted somewhat downstream of the  trailing  .edge, 
where the  velocity minimum moderated ( c   . f .  , r e f .  2 2 ) .  

Navier-Stokes  equation s e t  by employing an order of  magnitude analysis. The 
boundary layer  equations  are a simplified  subset of the developed parabolic 
system, the use of which i s  not  constrained t o  a symmetric geometry. A two- 
equation  turbulence  kinetic  energy-dissipation  function model i s  employed t o  
close  the developed  system for  turbulence phenomena. For aeroacoustic flows 
over flaps with  sharp t r a i l i ng  edges, hence devoid of flowfield  separation, 
the developed equation system can be  marched directly  off   the  f lap  surface  into 
the  t ra i l ing edge wake. Non-equilibrium  turbulence phenomena within  the imme- 
diate  wake flow i s  allowed, such t h a t  local extrema in  the  turbulence phenomena 
can  be predicted. The influence of a parous-acoustic  treatment  of  the  flap 
surface  is  simulated by appropriate boundary condition  specification on the up- 
stream boundary layer  flow. The influence i n  the  resultant wake flow i s  then 
evaluated by d i rec t  numerical marching of the  altered flow into  the  secondary 
mix ing  region. The val idi ty  of the porous surface  simulation,  regarding 
selected boundary condition  equivalence, i s  evaluated by a complete  Navier- 
Stokes numerical solution  for  the flow within  the immediate s lo t   v ic in i ty .  
The developed parabolic  concepts  retain  validity  for  non-separated three-dimen- 
sional flows  over f i n i t e  span planar  flaps. 

i s  presented. A brief overview of the  basic flow i l l u s t r a t e s  how determined 
flowfield  distributions may  be employed i n  an aeroacoustic model. The required 
equation sets  are  presented  including  appropriate boundary condition  specifi- 
cations  as a function of the boundedness o f  the  flow. A f i n i t e  element  algo- 
rithm is  employed t o  cast   the developed equations i n  form sui table   for   direct  
numerical solution.  Results  obtained us ing  the COMOC computer program to  solve 
these  equations  are  presented  to  validate  the developed concepts. 

The present approach is  t o  establish a parabolic approximation to  the 

The theoretical  formulation of the  aeroacoustic  jet-flap  flowfield.mode1 



SYMBOLS 

a 

A 

C 

C 

c f 
d 

e 

f 

F 

Fr 

h 

H 

I 

k 

K 

R 

L 

m 

M 

n 

P 

P 

4 

sound  speed; boundary  condition  coefficient 

Van Driest  damping  function 

wall porosity  friction  factor 

coefficient 

skin  friction 

differential 

a1 ternating  tensor 

function of known  argument 

drag force 

Froude  number 

slot  nozzle  height 

boundary  layer  shape  factor 

farfield  acoustic  intensity 

turbulence  kinetic  energy 

generalized  diffusion  coefficient 

differential operator;  turbulence  length  scale 

differential operator; length 

finite el ement index 

Mach number;  number of finite  elements  spanning R 

unit  normal  vector;  nodes  per  element 

pressure;  generalized  parameter 

Stokes  stress  tensor 

generalized  dependent  variable 

generalized  discretized  dependent  variable 



R 

Re 

S 

t 

T 

X 

a 

B 

a R  

6 

6* 

E 

0 

K 

x 
1-I 

V 

domain of e l l ipt ic   different ia l   operator  

Reynolds number 

acoustic  source term; f i n i t e  element  assembly operator 

time 

Lighthill  stress  tensor 

velocity  vector 

reference  velocity 

friction  velocity 

scal e vel oci  ty 

observer  distance 

Cartesian  coordinate system 

Cartesian  coordinate system 

friction  velocity Reynolds number 

acoustic model parameter 

acoustic model parameter 

closure o f  solution domain R 

Kronecker del ta ;  boundary layer  thickness 

boundary layer  displacement  thickness 

turbulence  dissipation  function 

angle: boundary layer momentum thickness 

Karman coefficient (MLT) 

multiplier;  turbulence  sublayer  constant (MLT) 

dynamic viscosity 

kinematic viscosity 
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P 

ai j 

T i  j 

4 

w 

n 

density 

mean f l ow  Stokes s t ress   tensor  

Reynolds stress  tensor;  wall shear  stress 

f i n i t e  element  functional 

generalized  initial-value  coordinate . 

streamfunction 

turbulence damping f a c t o r ;  frequency;  vorticity 

solution domain 

Superscripts: 

c 

* 

effect ive value 

matrix transpose 

turbulence  correlation  function 

mass-weighted time-average 

time average 

u n i t  vector 

mass-weighted fluctuating component; ordfnary  derivative 

approximation 

Subscripts : 

eo g l o b a l  reference  condition 

e freestream  reference  condition 

i , j , k ,R tensor  indices 

j j e t  reference  condition 

6 



- non-tensor  index 

m f i n i t e  el ement domain 

0 init ial   condition 

t time derivative;  turbulent 

W wall reference  condition 

Notation: 

€ 1  column matrix 

C I  square  matrix 

U u n i o n  

n intersection 

E belongs t o  



METHOD OF ANALYSIS 

Problem Description 

The general  configuration  for  the  aeroacoustic  flowfield of in te res t  is 
shown i n  Fig. 1, i l l u s t r a t ing  a source of h i g h  momentum f lu id  flowing  over an 
aerodynamic surface  subject  to  acoustic  modification. The flow leaves  the 
surface a t  a sharp  trail ing edge,  tangent t o  the mean chord, i n  accordance 
w i t h  the Kutta condition, and proceeds t o  equilibration w i t h  the  freestream. 
I t  i s  assumed the flow is   essent ia l ly   unidirect ional  and  parFlle1 t o  the x ,  
(curvilinear)  coordinate  as shown; hence u1 >> u,, u ,  where U i  i s  the 
velocity  vector. 

J e t  Flow Flap  Deflection 
Pattern Angle (0) 
" " _  20 

60 
"- 60 (Part ia l ly  

Detached) 

Figure 1. Schematic o f  Representative  Jet Flow Patterns 
Over Wing/Flap Surface, M, = 0.8 ( r e f .  18) 

The point of departure  for  establishment of an acoustic model i s  the 
theory of Lighthil l   (ref.  2 ,  3 ) .  Based upon an exact  analysis  using f i r s t  
principles,  Lighthill  established t h a t  the  partial  differential  equation 
governing  propagation of sound in a homogeneous  medium a t  r e s t   i s  

where a. is   the  reference sound speed, and  the  solution domain i s  assumed 
devoid of solid  surfaces. Equation (1) i s  recognized as the wave equation; 
i t  possesses  the  retarded-time  solution,  expressed i n  terms of the  perturbation 
t o  the mean density a t  the  point xi  , and the  source  strength  distribution 
a t  yi , i n  the form 
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I 

The noise  source mechanisms are  described by the L i g h t h i l l  s t ress   tensor ,  
Ti - the  r ight  side of equation (1). They consist of the  instantaneous 
cohective  accelerations and force terms as  

T i j  = p u . u  + p i j  - a0prSij 2 
1 j  (3 1 

The P i j  tensor  contains  the  pressure and local  viscous  stresses and i s  
expressed  as 

A useful  characterization of  the terms i n  equation ( 3 )  i s  obtained by 
decomposition  of the  velocity  f ield i n t o  mean time-averaged and fluctuating 
components as 

u i  = iji + u; 

Hence , 

Evaluation of the second derivative o f  equation ( 6 )  i s   required;  a p p l y i n g  the 
continuity  equation,  the  instantaneous  source term o f  the  acoustic  equation 
i n  mean veloci ty   f ie ld  iij i s  

9 



The density  derivative terms are  removed  by a Galilean  transformation. For 
small Mach number, temperature  effects may also be neglected, which deletes 
the   l as t  two terms of equation ( 7 ) .  The source term that  requires  evaluation 
then becomes, i n  a moving reference frame 

+ 2(iji,ipu’.) J , j  + (pu:u’),ij 1 J  

Previous  analyses for elementary j e t  and wake flows have idealized  the 
mixing  layer by the assumption t h a t  only Cil i s  non-vanishing and t h a t  i t  i s  
independent o f  x l .  This removes the f i r s t  and t h i r d  terms i n  equation (8) 
and simplifies  the remaining summations. For the  je t - f lap flows o f  i n t e re s t ,  
however, the assumption tha t  ill= ti1(x2) is   inappropriate,   especially a t  the 
f l a p  terminus where large  local  accelerations can occur. The assumption on 
transverse mean velocity remains v a l i d ,  however,  which yields 

. . .  

The t h i r d  term i n  equation (9 )  was originally analyzed by Proudman 
( re f .  23) u s i n g  an isotropic  turbulence model for f r e e   j e t s .  The lead term 
was f i rs t  identified by Mollo-Christensen & Marasimbo ( r e f .  24) .  In the 
terminology o f  Li l ley  ( ref .  25) the t h i r d  term is  called  the  “self  noise” 
due t o   i t s  quadrupole  nature. The f i r s t  term i s  called  the  ‘‘shear  noise’’ 
since  the  shear components a re  modified by the mean velocity  derivative. 
The potential importance of  the second term stems from the  existence of  the 
terminus of the  t ra i l ing edge, a location  experimentally  verified  to be a 
strong  acoustic  source. 

Substitution of  equation (9 )  i n t o  (2 ) ,  and u t i l i z ing  a Galilean  space- 
time transformation,  yields  the so lu t ion  expressed i n  a reference frame moving 
w i t h  the f low as 

1 X + j a x . x  
a l , l  + ’ j -(pu:u:) a2  

h a ;  M2 4na4,M3 a t 2  1 J 

The farfield  noise  intensity has been determined from the  variance of 
equation  (10)  in a fixed  reference  frame,  as 

10 



The product i s  understood to  include a l l  possible  tensor  combinations. The 
overbar  indicates time-averaged and equation (11) represents  the  noise 
intensi ty  measured a t  observer  location x due to   a l l  coherent  sources. 

Evaluation of integrals  i n  equation (11) i s  complex; modeling can be 
employed,to  express  the  covariances i n  terms of correlations of the  turbulent 
flowfield. Equation (11) becomes a single  evaluation i n  a uniform mean flow. 
w i t h  isotropic  turbulence  since  only  the  self-noise term persis ts .  Proudman 
( r e f .  23) evaluated a simplified model using  the  concept of an eddy volume, 
beyond  which s ignif icant  coherence  vanishes. He established  the  intensity a t  
a point i n  the farfield for a moving . -  reference frame as 

In equation (12), k i s  turbulence  kinetic energy 

k = - u U  1 7  
2 i i  

which for  isotropic  turbulence is  U; U; . The turbulence  dissipation  function 
E is  defined  as 

au; au* 
& G i j  : 3; - - j axk axk 

where v is  the f l u i d  kinematic  viscosity. M, is  an eddy convection factor .  

The de r iva t ion  procedure of  Proudman was applied t o  the mean shear  noise 
. .  . .  

term of  equation ( 9 )  by Lilley ( r e f .  25). Under the assumption of  isotropic 
turbulence,   the  farfield  intensity i s  

. . .  . . .  

where C i s  a constant and R i s  a longitudinal  turbulence  length  scale. 

Use of the concept fo r  an axisymmetric f r e e   j e t  was proposed by Moon and 
Zelazny ( re f .  26).  For this case,  the  shear  noise  term,  equation (9), i s  
non-vanishing for  j = 2 ,  and several  additional terms resu l t  from the .  
summation implied by the  repeated  subscripts i n  the  self  noise term. In the 
fashion of Li l ley  ( ref .  25) and  Csanady ( r e f .  2 7 ) ,  noise was assumed radiated 
a t  two dominant frequencies. The time dependence i n  equation (11) was expressed 
i n  terms o f  these  frequencies and appropriate eddy decay length  scales. 
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Apply ing a d i r e c t i v i t y   t e r m   f o r   t h e   f r e e - j e t   s h e a r   l a y e r   f l o w ,   d e v i s e d   f r o m  
geomet r ica l   acous t ics   theory  (Csanady, re f .  27),  and 
appropr ia te ly   def ined  eddy  vo lumes,   the  der ived  form 

i n t e g r a t i n g   o v e r  
f o r   e q u a t i o n  (11) was 

. .  

The two  terms r a d i a t e   a t   t h e   s e l f   n o i s e  and  shear  noise  frequency 
r e s p e c t i v e l y .  The f a r f i e l d   i n t e n s i t y   i s  an i n t e g r a l   o v e r   t h e   s o u r c e   f i e l d  
modeled' i n  terms o f   tu rbu lence  parameters ,   i .e . ,  components o f   t h e  Reynolds 
s t ress  tensor .   For   e lementary  two-d imensional   or   ax isymnetr ic   boundary  layer  
and   shear   l aye r   f l ows ,   t he   s ign i f i can t   shear  component o f   t h e  Reynolds  stress 
can  be  expressed  as  (cf.  , r e f .  28, 29) 

where C i s  a constant .  The d i s s i p a t i o n   l e n g t h   s c a l e  !?,d i s  a f u n c t i o n   o f  
k and E as 

S u b s t i t u t i o n   o f   e q u a t i o n s  (13), (17) and (18) then   y ie lds   equa t ion  (16) an 
e x p l i c i t   f u n c t i o n   o f   t h e   t w o - d i m e n s i o n a l   d i s t r i b u t i o n s  o f  t u rbu lence   co r re la -  
t i o n s  and mean f low  shear.  

The present   focus  i s   t h e  more  complex attached  aerodynamic  f low  over  and 
downstream o f   t h e   t e r m i n u s   o f  a f l a p   w i t h  a sharp t r a i l i n g  edge. Added 
c o m p l e x i t y   r e s u l t s   f r o m  iil becoming a f u n c t i o n  o f  b o t h  x, and x,; Ci, and Ci3 r e m a i n   n e g l i g i b l y   s m a l l   t o   f i r s t   o r d e r .   S e v e r a l   a d d i t i o n a l   t e r m s  
may assume importance i n  equat ion (9)  as  the j sGmmations now range  over 1 
and 2. Hence, bo th  x, and x, d e r i v a t i v e s  of u, , as w e l l  as the   tu rbu lence 
c o r r e l a t i o n s  and  severa l   c ross-product   terms  would  resul t .  A computat ional  
s t u d y   o f   t h e   b a s i c   f l o w   g e o m e t r y   c o u l d   i n i t i a l l y   f o c u s  on es tab l i sh ing   de . ta i l ed  
d i s t r i b u t i o n s   o f  G I  and turbulence  corre la t ions,   for   example,  k ,  E and kd 
and t h e i r   d e r i v a t i v e s .  
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The F lowf ie ld   Equa t ions  

The b a s i c   a e r o d y n a m i c   c h a r a c t e r   o f   t h e   j e t - f l a p   f l o w f i e l d  has  been 
i l l u s t r a t e d .  It i s   r e q u i r e d   t o   e s t a b l i s h   s u b s e t s   o f   t h e   g o v e r n i n g   N a v i e r -  
Stokes  equat ions  that   adequate ly   descr ibe  the  fundamenta l   f low  character   and 
a r e   a l s o  amenable t o   n u m e r i c a l   s o l u t i o n .   I n   C a r t e s i a h   t e n s o r   n o t a t i o n ,   w i t h  
summation i m p l i e d   f o r   r e p e a t e d   l a t i n   s u b s c r i p t s ,   t h e   n o n - d i m e n s i o n a l   f o r m   f o r  
mass and momentum c o n s e r v a t i o n   f o r   f l o w   o f  a compress ib le ,   s ing le-species,  
i s o e n e r g e t i c   p e r f e c t   f l u i d   i s  

The dependent  var iables i n  e q u a t i o n s   ( 1 9 ) - ( 2 0 )   h a v e   t h e i r   u s u a l   i n t e r p r e t a t i o n  
i n   f l u i d  mechanics  where p i s  mass dens i t y ,  u i s   t h e   v e l o c i t y   v e c t o r ,  
p i s   t h e   s t a t i c   p r e s s u r e ,  b i s   t h e  body  force,  Re i s   t h e   R e y n o l d ’ s  number 
and F r   i s   t h e  Froude  number. The Stokes  s t ress  tensor ,  a i j   i s   d e f i n e d   i n  
terms o f   t h e  dynamic v i s c o s i t y  1-1 as 

j 

The Navier-Stokes  system,  equations  (19)-(21), becomes amenable t o  
n u m e r i c a l   s o l u t i o n   t e c h n i q u e s   i n  a p r a c t i c a l  sense on ly   a f te r   t ime-ave rag ing .  
Employing  the  Reynol  d’.s  decomposit ion  (cf . , r e f .   3 0 ) ,   d e f i n e  

ui = ij + u; i 

where i i s   t h e  mass-weighted,  time-averaged v e l o c i t y  

and u i  a r e   t h e   v e l o c i t y   f l u c t u a t i o n s   a b o u t   t h e  mean f low. By d e f i n i t i o n ,  

to + T 
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and 

The time-averaged equivalent of the Navier-Stokes  equations (19)-(20) becomes 

where - i s  the time-averaged mean flow s t ress   tensor ,  j 

In eqn. ‘28, i; i s  the time-averaged dynamic viscosity,  and the f o u r t h  term 
i n  the  divergence i s  called  the Reynolds s t ress   tensor  -ri 

We seek  approximations to  the  steady-flow, time-averaged  Navier-Stokes 
equations t h a t  yield adequate  flowfield  descriptions t h a t  are  economically 
amenable t o  numerical solution using present day computers. One simplication 
i s  the  parabolic approximation which  can yield  three-dimensional flow descrip- 
tions while  requiring  only two-dimensional computer storage. The three- 
dimensional parabolic Navier-Stokes  equations (3DPNS) describe  steady,  confined 
or unbounded , viscous and turbulent  flowfiel ds wherein: . .  . .  . . .  

1) a predominant  flow direction i s  uniformly discernible,  

2 )  only i n  this direction  are  diffusion  processes  negligible 
compared to  convection, and,  

3)  no significant  flowfield  disturbances  are  propagated upstream 
against  the predominant flow. 

- 

Figure 2 i l l u s t r a t e s  the basic  rectangular s lot  nozzle-planar j e t   f l a p  
configuration  of  interest,  including  representation of  a f i n i t e  element 
discretization and f l a p  surface  treatment, which i s  amenable to  flowfield 
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characterization  using  the  3DPNS  equation  system. The predominant  direction 
of flow  is  assumed  parallel  to the x1 coordinate.  The  parabolic  approxima- 
tion  to  equations (26)-(28)  is accomplished by eliminating  diffusion in this 
direction;  hence,  equation (28) becomes 

" . .  . 

The mean flow unidirectionality  assumption will also  affect terms  retained 
in the  Reynold's  stress model, as discussed in the  next  section.  The sub- 
script bar  notation  denotes  the  index  not  eligible for summation, but  is 
synonymous  with  the  identical  tensor  index. 

The  3DPNS  equation  system  contains, as a  subset, the familiar  two- 
dimensional  boundary  layer  (2DBL)  and  two-dimensional  parabolic  Navier- 
Stokes (2DPNS)  equations.  Both  these  systems  are  employed  to  predict  the 
jet-flap flow evolution on the  symmetry  plane of the  three-dimensional 
geometry  illustrated in Figure 2. The  two-dimensional  geometry is illustrated 
in Figure 3, including  labeling of the  primary  and  secondary  mixing  regions. 
For  illustration, the 2DPNS  equations in expanded  form are 

- a[-pu;u;] - g-[-pu;ud = 0 
axl 
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The dependent variables i n  the 3DPNS and 2DPNS system are  the mean steady 
flow vector iii and pressure i;. For a two-dimensional boundary layer,   the x1 
pressure  gradient is known from the  freestream flow,  and impressed across  the 
boundary layer  thickness.  'According  to  the same order  of magnitude analysis,  
equation (33)  vanishes ident ical ly  t o  f i rs t  order,  yielding a second-order 
balancing of  perturbation i n  pressure  to  the Reynolds s t r e s s  normal  component 
as 

L ( p )  = L [ F  -t -1 = 0 
ax2 (34 1 

Closure of  the 3DPNS system requires  specification of T ~ ~ ;  the  turbulence 
model i s  discussed i n  the  next  section. 

The essential  differential  character o f  the 3DPNS  momentum equation i s  
ini t ia l -value i n  the x1 coordinate and bounday value on the ( xz ,  x g )  plane. 
Hence, given an i n i t i a l  distribution of ti., equations (27) - (28)  are marched 
downstream parallel   to x l ,  a'nd boundary chd i t ions   a r e  imposed on the  flap 
surface and a t  al l   lateral   locations whereat the  viscous j e t  flow merges w i t h  
the assumed inviscid  freestream. The starting  solution  plane and the  location 
o f  boundary conditions  specification  is denoted i n  Figure 3 for  the two- 
dimensional  case. The boundary condition  location  for a three-dimensional 
case  occurs everywhere a long  the  outer  extremity of t he   f i n i t e  element g r i d  
i l lus t ra ted  i n  Figure 2 .  Correspondingly, on this closure segment, t h e   j e t  
velocity  asymptotically matches the  freestream  value which i s  enforced  as a 
gradient boundary condition. The velocity  vector  vanishes  identically on the 
flap  surface segment, F i g .  2-3,  except i f  the  f lap is  assumed porous, where- 
upon ii2 takes on a specified non-zero value, i .e. , u 2  ( x 1 ,  0, x g )  E V,' 
( x l ,  x,). For the p lana r  f l a p  symmetry plane  cases  studied,  the  freestream 
pressure i s  uniform; therefore ,   to   f i rs t   order ,   the   pressure  is  everywhere 
constant, and equation  (34)  provides a second-order  estimate of pressure 
variation. The continuity  equation  (31)  provides  the  freestream boundary 
condition  for  solution o f  equation  (33) for transverse  velocity i n  the 
secondary 'mixing region. For the boundary layer  solution on the f l a p  surface, 
equation (31) i s  solved  directly for ii2 as an ini t ia l -value problem i n  the 
x2  coordinate  direction. Hence, a complete jet-flap  flowfield  solution 
requires a switching  of  equation  solution  procedure  as  the flow departs  the 
f l ap   t r a i l i ng  edge. 

- 

The second simplification a plied  to  the time-averaged  steady-flow 
Navier-Stokes  equations  (26)-(28 P , for  evaluation  of a porous je t - f lap  f low,  
i s  reduction t o  two-dimensional space and transformation of  dependent variables 
t o  a vorticity-streamfunction  description  (cf. , r e f .  31). In subsonic  flows 
for  which density may  be assumed constant,  equation  (26)  defines a divergence- 
f r ee   f i e ld ,  $1 . From vector  field  theory, an equivalent  expression on 
spaces spanned by Cartesian  coordinates i s  
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where eijk i s  the  alternating  tensor,  J i s  the  determinant of the metric, 
and $k i s  the  streamfunction  vector.  Substitution of equation (35) i n t o  
(26) yields an ident i ty  i n  zero. A useful  transformation  of  equation (27) is  
accomplished by definit ion of the  vorticity  vector 

afik - 1. 
9 = “e*. J 1 J k K  

j (36) 
. .  . .  . 

For two-dimensional  problems, the  sole non-vanishing scalar components for  
b o t h  J, a n d  w correspond t o  k = 3, i n  which case an elementary 2DNS 
differekt ia l  equktion s e t  can be established. Denoting the x3 components o f  
$ and ’ w as J, and w, respectively,  the  compatability  equation  resyl ts 

from substi tution of  equation (35) into (36) yielding, 
k k 

Taking  the  curl of equation ‘(27) t o  eliminate  the  pressure and s u b s t i t u t i n g  
equations (35)-(36) , yields  the two-dimensional vorticity  transport  equation 
(c f . ,   re f .  31), 

where a i j  is  defined by equation (28). 

Equations (37)-(38) can be  employed to  evaluate two-dimensional t ransient  
low speed aeroacoustic  flows wherein separation and reci-rculation  are dominant 
features.  Their use is  appropriate, for example, for  a detailed  analysis of 
the flow departing a b l u n t  t r a i , l i n g  edge o f  a j e t  f l a p .  For the  present  study, 
this equation s e t  was solved  for  the  recirculating flow w i t h i n  the immediate 
vicini ty  of a simulated porous s l o t  on the  jet   f lap  surface,   see  Figure 3. 
The solution domain i s  shown i n  Figure 4 ,  along w i t h  a representative  f inite 
element discret izat ion.  

7 

Fig.  4 Porous Slot Flow S o l u t i o n  Domain 



Flow enters from the left, and the base of  the slot  region is assumed porous, 
hence a source or sink for mass. Equations (37)-(38) are both boundary value 
problem descriptions, hence boundary condition  specification is appropriate 
about the entire  closure. illustrated in F.igure 4. Any specified inlet/outlet 
Yelocity  defines both 3, and w, using equations (35)-(36). Along the solid 
flap surface, 3, is a constant and the no-slip boundary condition equivalent 
for w is  (cf. , ref. 31) 

where x, is the  coordinate normal to  the wall. Since equation (38) is 
also initial-value, the initial vorticity contour wo is determined from a 
specified velocity distribution using equation (36). The initial distribution 
for $ is obtained from solution of equation (37) using wo. 

The identified partial differential equations  systems are.potentially 
useful for determination of the turbulent  aeroacoustic  flowfields  characteristic 
of the basic jet-flap geometry. It remains  to  establish a closure model for 
turbulence phenomena, to  allow  determination of  the Reynolds  stress  tensor in 
terms  of computational variables. 

Turbulence Closure Modeling 

The operation of time-averaging has introduced the Reynolds stress into 
the Navier-Stokes equations as well as  the simplified subsystems identified 
for analysis of  the  jet flap flowfield. The primary requirement is for 
development of  a  closure model for the steady flow parabolic  approximation, 
since the presented full Navier-Stokes  analyses  are restricted to flows 
dominated by wall damping. Using we1 1 known procedures (cf., ref. 32) ,  the 
exact partial differential equation  description for the  kinematic  Reynolds 
stress -u: u' in a steady mean flow is 

.. ' j. ." 

au: U: 
-I + q 6 .  u: + "pi) = 0 

P J k  1 1 
where is the kinematic viscosity, ;/;. 
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Equation (40) is the  departure  point  for  development of a  closure  model. An 
additional  differential  equation  for  turbulence  dissipation  rate E is 
required;  assuming the process  is isotropic, 

The exact  transport  equation for dissipation  function E is  (cf.,  ref. 30) .  
. .  

r 1 

Equations (40)- (42)  represent  seven  additional  partial  differential 
equations  describing  turbulence  phenomena.  However,  this  system  is  not 
closed since  the third order  correlations  remain  undefined.  Additional 
differential  equations  could  be  established,  but  they in turn  would  involve 
undefined  fourth  order  terms.  Hence,  modeling of third order  correlations 
is  invoked at a level of completeness,  dependent upon the  dimensionality  and 
geometrical  complexity o f  the physical  system.  For  example,,Launder et a1 
(ref. 33) present  closure in terms of all components of -uiuj.. They  document 
validity of the model for several cases including  isotropic  turbulence, free 
shear flows, elementary  duct  flows  and flat plate  boundary layer  flows. 

In earlier work!,  Hanjalic'  and  Launder (ref.29), establish a closure 
applicable to thin  shear  flows  where in only -u;u;is retained, and  solved  in 

. combination  with E and the  turbulence  kinetic  energy  k  defined  as 

For  the  uni-directional,  shear-dominated flows of primary  interest,  wherein 
fi,>> i i 2 ,  i j 3 ,  the contraction-of equation (40) yields, after  application of 
the  parabolic'  approximation, 



Equation (44) defines a new summation index  convention appropriate  for 3DPNS 
as ,, 1 2 i , j 5 3 and 2 e R ’<  3 .  The corresponding form for the  dissipation 
equation (42) is 

- - 
. .  - . .. 

aal 
aXR 

- C: U ; U ~  E k” - + CE E k-’ = 0 2 2  

In equations (44)-(45), the  various  constants C, are  determined from approx- 
imate analyses  and/or computer opt imiza t ion  ( ref .  33) .  

The next  level  of  simplification  involves  specification of an effective 
turbu’lent d i f f u s i o n  coefficient v t .  From f i r s t  principles  (cf. ,   ref.  32), 
the  effective d i f fus ion  coefficient must be of the form 

Vt z C V R  
(46) 

where C i s  a constant, V a scale  velocity; and R a scale  length. For 
the  turbulence  kinetic  energy-dissipation  function two equation  closure 
hypothesis  (herein named TKE), V is taken as  the  square root  of turbu’lence 
kinetic  energy,  equation (43). A dissipation length scale Ed defined i n  
terms  of k and E ( re f .  34) i s ,  

.- 

The TKE closure  hypothesis  then  specifies 

Note tha t  this i s  precisely  the d i f f u s i o n  coefficient for turbulent  kinetic 
energy,  equation (44) .  Furthermore, upon summing the d i f fus ion  terms i n  
equat ion (45), u s i n g  equation (43) and assuming isotropy, equation (48) 
yields  the d i f fus ion  coefficient for dissipation  function  as well. 
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cor 

d i  1 
k ,  

To close the 3DPNS mean f low system, i t  is a1 so required  to model the 
Irelation between the  shear components of the  Reynold's  stress  tensor and 
E and the mean veloci ty   f ie ld  iii. Viewing equation (30), and neglecting 
i tation,  the  required  relation i s  assumed of  the form 

.. . . .  

" 

. .  
(49) 

The subscript  bar  indicates  the index  not e l ig ib le  for summation. The elements 
of the  correlation  tensor C j a  a re  determined from a simplified  analysis  or 
experiment;  the index  range IS res t r ic ted  under the parabolic  assumption. 

For the  analysis  reported  herein,  the 2DPNS and 3DPNS equation systems 
are  closed assuming that  C i ,  i n  equation (49) i s  a diagonal  $ensor. The 
overall  effective  diffusion  coefficient can then be written  as 

. 

The 3DPNS equation system for steady mean flow and turbulence  closure,  using 
the  defined  two-equation model and effect ive d i f f u s i o n  coefficient,  then 
becomes .' 

L (6 )  = -(FGi) axi a = 0 
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The tensor  indices  range 1 5 i , j 5 3 and 2 5 R 5 3 for  3DPNS. For 
symmetry plane  analyses us ing  2DPNS, 1 I i , j  s 2, R .= 2 only. Hence, since 
i = 1 corresponds to  the  direction of predominant flow, d i f f u s i o n  i s   r e s t r i c t ed  
to  the plane  transverse  to  the x1 coordinate,  as required by the parabolic 
assumption. The  recommended values  for  correlation  coefficients  for  shear 
layer flows are  given i n  Table 1 (cf .  , r e f .  33, 34) .  

Table 1 

Coefficients i n  TKE Closure Model 

Vari ab1 e Coefficients 'Equat ion No. 

v t  

Pr, = 1.3, Ci = 1.44,  C g  = 1.92 (54) E 

c, = 0.09 (48) 

k Prk = 1.0  (53) 

The boundary conditions  for  the mean flow  equations have been described. 
Since  the T K E  equations  (53)-(54)  are  also  initial-boundary  value  descriptions, 
i t  i s  necessary t o  establish  appropriate  statements.  Referring t o  Figure 3 
for  example, the  levels of k and E vanish i n  the  non-turbulent  freestream 
flow. Since  the Reynolds stress  hypothesis i s  v a l i d  only i n  regions where the 
turbulent Reynolds number i s  large, i t  i s  not  economically feasible  t o  enforce 
k and E t o  vanish a t  the f l a p  surface. The alternative  selected for these 
s tud ies   i s  t o  use boundary layer mix ing  length  concepts t o  determine  the 
distrfbutions of k and E near  the  wall. Mixing length  theory (MLT) 
expresses  the  correlation i n  equation (46) i n  terms  of the predominant mean 
flow gradient and a length  scale 2 ( r e f .  3 5 ) ,  

where R is  the mixing length 

and w' i s  the Van Driest  function t h a t  accounts for the wall influence on 
veiocity  fluctuations. 
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I 

w E 1 - exp(-x2A-') 
(57) 

In equation  (56), x p  i s  the  coordinate normal t o  the  f lap,  6 i s   t he  
boundary layer  thickness, and X and K are  constants (0.09 and 0.435 
respectively). In equation (57) ,  A i s  a function of many factors  influencing 
flow phenomena near  the  surface  including  axial  pressure  gradient and normal 
mass flow addition. The form of Cebeci and Smith ( r e f .  32) serves t o  unify 
the many formulations  as 

All variables  are time-averaged  steady components, subscripts e and w refer 
t o  freestream and wall values  respectively, A+ i s  a constant  (25.3), and 
-rW i s  the  skin  friction.  Pressure  gradient and mass addition  effects  are 
accounted for  accordingly  as 

where ue  is  the  freestream  axial  velocity, Vw i s  the  specified  transverse 
wall velocity , and uT i s  the shear  velocity 

The shear  stress,  -rW i s  defined  as 



The  Ludwieg-Ti 1 lman formula ( r e f .  36) yields  
. ” .  . .  

r 1 

-0.678H Rego. 2 6 1  
TW 

where Reg i s  the Reynolds number based on boundary 1 ayer momentum thickness , 
and H z 6*8” where 8” is  the  displacement  thickness  (cf. , ref .   35) .  

Equations (55)-(64)  provide  the  formalisms  necessary t o  determine k 
and E near a s o l i d  surface. These same concepts a re  employed t o  complete 
turbulence  closure for the two-dimensional  Navier-Stokes solutions for the 
pore slot   recirculating flow, by identifying for equation  (38)  (cf. ,   ref.  31), 
where  pe i s  given by equations (50) and (55). 

Furthermore,  through the dual definit ions o f  turbulent  effective  viscosity, 
equations (48) and  (55), and since  the  latter  involves f u n c t i o n s  only o f  the 
mean axial  velocity component G I  , which i s  e i ther  known or readily i n i t i a l  - 
ized, a means is  established t o  in i t ia l ize   d i s t r ibu t ions  of b o t h  k and E 
a t  the node points  of a discretization.  Since  the developed TKE p a r t i a l  
differential  equations  are  initial-value,  this information is  required t o  
s tar t  a solution.  Additional comments  on verification of  t h i s  procedure are 
presented i n  the Appendix. 

The closure for turbulence phenomena i s  complete a t  the  level of  sophis- 
tication  selected for these  studies. The partial  differential  equations 
governing the  flowfields o f  in te res t   a re  now closed. A1 1 boundary conditions 
have  been appropriately  identified  for  partially and completely unbounded 
solution domains. The initial-valued  character has been noted, and means 
established t o  init ialize  required  distributions i n  terms o f  readily  available 
d a t a .  Numerical solution of  the developed  system can provide  the  detailed 
distributions of  mean flow and velocity  fluctuation  correlations  required 
for a theoret ical   analysis .   I t  remains to  establish  the numerical solution 
a1 gori t h m  for these  equations. 

FINITE ELEMENT SOLUTION  ALGORITHM 

The desired form of the  various  partial  differential  equation systems 
governing the  aeroacoustic  jet-flap flows of  interest   are  developed. Each 
i s  a special  case of  the  general,  second-order  non-linear  elliptic boundary 
value  partial  differential  equation 
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Herein , q 'is the general  ized dependent variable,  the  tensor  indices range 
2 5 k , k  5 3 and 1 5 i 5 3 ,  . K i s  the diffusion.coeff ic ient ,  f ,  is  a 
function o f  i t s  argument that  specifically  includes  three-dimensional con- 
vection, p ,  i s  a generalized  solution  parameter, and f2 i s  the   i n i t i a l -  
value  operator. The boundary condition  statements  for each of the dependent 
variables can be concisely  expressed i n  the form 

i .e . ,   the  normal derivative of q i s  constrained by q and a parameter as 
determined by specification of t h e   a ( i ) .  An init ial   condition i s  required 
for  q identified  with each dependent variable  as, 

The f i n i t e  element solution  algorithm i s  based upon the assumption that  
L ( q )  i s  uniformly  parabolic  within a bounded  open  domain a ; t h a t  i s ,   t he  
lead term i n  equation (66)  i s  uniformly e l l i p t i c  w i t h i n  i t s  domain R, with 
closure aR, where 

and x. 5 x. For the 3DPNS equations, x is   associated with  the x1 coordinate. 
For 2DPNS, i t  i s  time. Equation (67)  expresses  functional  constraints on the 
closure of n,aa = aR x[xo. x), and the  init ial-condition  specification, 
equation  (68) , l i e s  on 'RUaR x xo- 

each three-dimensional dependent variable  is   separable  in  the form 
The concept o f  t he   f i n i t e  element algorithm  involves  the assumption t h a t  

The functional dependence i n  q2 (x , ,  x 3 )  i s  represented by a polynomial in xR.  
The expansion coefficients q ,  can be most conveniently  expressed  in terms 
of  the  value of q*(x, x a )  a t  the nodes of t he   f i n i t e  element discretization 
of R .  Then, equation (70) takes  the form 
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where the   po lynomia ls  (b(x,) a r e  known f u n c t i o n s   o f  x, and x g  . Since 
t h e y   a r e  known, t h e y   c a n   b e   d i f f e r e n t i a t e d   a n a l y t i c a l l y ,  e.g., 

Hence, t h e r e   i s  no need t o   e s t a b l i s h   d i f f e r e n c e   f o r m u l a e   t o   a p p r o x i m a t e   t h e  
d i f f e r e n t i a t e d   t e r m s   i n   L ( q ) .  

The f i n i t e   e l e m e n t   s o l u t i o n   a l g o r i t h m   i s   e s t a b l i s h e d   f o r   t h e   e q u a t i o n  
system  (66)- (68)   us ing  the  method  o f   weighted  res iduals  (MWR) formulated  on 
a loca l   bas is .   S ince   equat ion   (66)  i s   v a l i d   t h r o u g h t  a, i t  i s   v a l i d   w i t h i n  
d i s j o i n t   i n t e r i o r  subdomains Rm descr ibed by (xi ,x) ER x [ x   , x ) ,   ca l l ed  
f i n i t e   e lemen ts ,   where in  UR,,, = R. The approx imate   so lu t lon  f8r q w i t h i n  
Rm x[xo,x), c a l l e d   q i  (xi ,X> , i s   g i v e n   i n   e q u a t i o n  (71) .  There in ,   the  
f u n c t i o n a l s  &(.x,) are  subsets  of  a f u n c t i o n   s e t   t h a t   i s   c o m p l e t e  on Rm. 
The expans ion   coe f f i c i en ts   Qk (X)   rep resen t   t he  unknown x- dependent  values 
o f  q; (xi,x) a t   s p e c i f i c   l o c a t i o n s   i n t e r i o r   t o  R and  on the   c losu re  2 % ~  

c a l l e d  nodes o f   t h e   f i n i t e  e l e m e n t   d i s c r e t i z a t i o n   o f  R. 

1 

To estab l i sh   the   va lues   taken  by   these  expans ion   coe f f i c ien ts ,   requ i re  
that  t h e   l o c a l   e r r o r   i n   t h e   a p p r o x i m a t e   s o l u t i o n   t o   b o t h   t h e   d i f f e r e n t i a l  
equat ion L(q; ) and the  boundary  condi t ion  statement  R(q*)   for  aWfi2R # 0, 
be  rendered  or thogonal   to   the  space  o f   the  approx imat ion  funct ions.   Employ ing 
an a l g e b r a i c   m u l t i p l i e r  X, t he   resu l tan t   equa t ion   se ts   can  be combined as 

r r  

where S i s   t h e  mapping f u n c t i o n   f r o m  

q loba l  domain R,  commonly termed  the 
m 

t h e   f i n i t e  element 

assembly  operator.  

subspace R t o   t h e  
m 

The  number o f  
equat ions (73) p r i o r   t o  assembly i s   i d e n t i c a l   w i t h   t h e  number o f  node p o i n t s  
o f   t h e   f i n i t e  element Rm. 

Equat ion (73) forms t h e   b a s i c   o p e r a t i o n   o f   t h e   f i n i t e   e l e m e n t   s o l u t i o n  
a l g o r i t h m  and o f   t h e  COMOC computer  program t o  be descr ibed.  The lead  te rm 
can be rearranged,  and X determined  by means o f  a Green-Gauss  theorem: 
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For aRmflaR nonvanishing  in  equation (74),  the  corresponding segment of the 
closed-surface  integral  will can the boundary condition c o n t r i b u t i o n ,  
equation  (73) by identifying Xa c53 with K, equation (66) .  The contributions 
t o  the  closed-surface  integral , equation (74) whereat aRmf laR  = 0 ,  can also 
be  made to  vanish. The globally assembled finite-element  solution  algorithm 
for  the  representative  partial  differential  equation system  then becomes 

The rank of the  global  equation system (75)  is   identical  with the  total number 
of node points on R U a R  for  which the dependent variable  requires  solution. 
Equation (75)  i s  a f irst-order,   ordinary  differential  system for 3DPNS. For 
streamfunction i n  2DNS, i t  i s  algebraic and the matrix structure i s  sparse and 
banded. Solution of the  ini t ia l -value system i s  obtained by COMOC using a 
predictor-corrector  finite-difference numerical integration  algorithm. A 
banded Cholesky equation  solver i s  employed t o  solve an algebraic  equation. 

Solution i s  also  required  for  the  continuity  equation (48) which 
retained  for  boundary-layer  flows.  Since i t   e x i s t s  in s tandard  form a s  
ordinary  differential  equation,  direct numerical integration  yields  the 
required  solution a t  node points of  the  discretization. 

i s  
a n  
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COMOC COMPUTER PROGRAM 

The f i n f t e  element solution  algorithm i s  u t i l i zed ,  as observed i n  the 
previous  section,  to  cast   the  original  init ial-valued,  el l iptic boundary- 
value problem description  into  large-order systems  of  purely  initial-value 
and/or boundary value  problems. The COMOC computer program system i s  being 
developed to  transmit the r a p i d  theoretical  progress i n  f i n i t e  element solution 
methodology into a viable numerical solution  capability. COMOC integrates 
or equation-solves  the  discretized  equivalent of  the governing  equation 
system. In i t ia l  distributions o f  a l l  dependent variables may  be appropriately 
specified or computed, and boundary constraints  for each dependent variable 
can be specified on a rb i t r a r i l y   d i s jo in t  segments o f  the  solution domain 
closure. The solutions for each dependent variable, and a l l  computed para- 
meters,  are  established a t  node p o i n t s  lying on a specifiably  nonregular 
computational l a t t i c e ,  formed by plane  triangulation of  the  ell iptic  portion 
of  the  solution domain R ,  i . e . ,  R U a R .  

The COMOC system i s  b u i l t  upon the  macrostructure  illustrated i n  
Figure 5. The Main executive  routine  allocates  core, us ing  a variable 
dimensioning scheme, based upon .the  total  degrees of freedom of  the g l o b a l  
problem statement. The s ize  of  the  largest  problem t h a t  can be solved i s  
thus 1 imited  (only) by the  available  core of the computer i n  use. The 
precise mix between dependent variables and parameters, and fineness  of  the 
discretization,  is   user-specifiable and widely variable. The I n p u t  module 
serves i t s  standard  function  for  all  arrays of  dependent variables, para-  
meters, and geometric  coordinates. The Discretization module forms the 
finite-element  discretization of  t h e   e l l i p t i c  so lu t ion  domain and evaluates 
a l l  required  finite-element  nonstandard  matrices and standard-matrix mul- 
t i p l i e r s .  The In i t ia l iza t ion  module  computes the remaining i n i t i a l  para-  
metric  data  required t o  s tar t   the   solut ion.  The Integration module consti- 
tutes  the primary execution  sequence o f  problem solution, and u t i l i ze s  a 
highly  stable,  predictor-corrector  integration a lgor i thm for  the column 
vector  of unknowns o f  the  solution.  Calls t o  auxiliary  routines for para-  
meter  evaluation  (effective  viscosity,  Prandtl number, source  terms, e t c , )  
as  specified  functions of  dependent and/or  independent  variables,  as well as 
ca l l s  for equation  solving  algebraic  systems,  are governed by the  Integra- 
t i o n  module. The O u t p u t  module is  similarly  addressed from the  integration 
sequence and serves i t s  standard  function v i a  a highly automated array- 
display  algorithm. COMOC can execute  dist inct  problems i n  sequence, and 
contains an automatic res tar t   capabi l i ty  t o  continue solutions. A discussion 
on the  functional  design of  COMOC i s  given i n  reference 37.  
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NUMERICAL RESULTS 

Numerical evaluation of the developed f l  owfield model can verify i t s  
u t i l i t y  by assessing  accuracy  of  predictions. In concert w i t h  examination 
of a practical  jet-flap  flow, a t e s t  program was conducted to  verify  factors 
affecting  accuracy of t he   f i n i t e  element  algorithm,  as embodied in COMOC, for  
turbulent flow predictions. Both the MLT and TKE closure models were evalua- 
ted,  and a discussion of resul ts  i s  presented i n  the Appendix. The following 
studies were conducted using discretizations and closure model combinations 
so identified  to  yield  accurate  results.  

Symmetry Plane  Analysis of A Slot Nozzle-Jet Flap Flow 

The basic geometry involves  interaction of a high momentum flow with a 
free-stream,  over and downstream of  the  terminus of a planar  jet   f lap,   see 
Figure 2 .  Many experimental  configurations have  employed rectangular  slot 
nozzles t o  form the  jet   f low, w i t h  aspect  ratios  (slot  w i d t h  t o  height)  in 
the  vicinity of  50:l.  Important  three-dimensional  effects  are  then  limited 
t o  the extremum boundary regions  while  the  core  flow  approximates a two- 
dimensional character. Experimental data were taken ( r e f .  38) on the symmetry 
center-plane downstream of a slot  nozzle-jet  flap  configuration  of  aspect 
ra t io   60: l .  This  case was selected t o  evaluate  predicted  distributions  of 
mean flow velocity and turbulence  correlation. 

The basic  experimental  configuration and computational solution domains 
are   i l lustrated  in  Figure 6 .  The j e t  flow is   accelerated by the  nozzle t o  a 
nominal U j  = 120 m/s. Due t o  the  associated  favorable  pressure  gradient, 
the ij, profi le  a t  the  starting  plane of the  solution  is  nearly uniform. 
Immediately downstream of the nozzle,  the j e t  flow interacts  with  the  free- 
stream  within  the  primary mixing region, and a turbulent boundary layer flow 
develops adjacent t o  the  flap which erodes  the  inviscid  potential  core a t  a 
ra te   different  from the  free  shear  layer mixing in  the primary region. The 
flap  terriplates a t  B sharp t r a i l i ng  edge.  Immediately thereaf ter ,  a secondary 
mixing region i s ,  engendered between the j e t  boundary layer flow and the en- 
trained  flow. The in i t ia l ly   zero  on the  flap  surface  is  rapidly  acceler- 
ated  within  the immediate downstream vicini ty  of the  flap  terminus. The large 
x, gradient of associated  with  the  turbulent boundary layer   i s  conse- 
quently  dissipated, and acts  in  the  process  as a strong source term for  gene- 
r a t i o n  of turbulence  kinetic  energy,  see  equation ( 4 4 ) .  Well downstream of 
the  f lap,   the  slot  flow  approaches a j e t  bounded by  two free  shear-layer mix- 
i n g  regions. 

The computational  simulation of t h i s  composite je t - f lap  flow was  accom- 
plished employing the 2DBL and ZDPNS solution  options and the TKE closure 
model. The flowfield  solution was in i t ia ted  a t  the  exit  plane of the  nozzle 
as noted in  Figure 6.  Since no experimental d a t a  were available t o  i n i t i a l i z e  
the  solution, a uniform prof i le   for  G+ a t  the  nozzle was assumed, and Us,, 
k and E were s tar ted a t  zero 1 evels.  (This  corresponds t o  the  sl  ug-start 
discussed  in  the Appendix . )  The lower portion of the nozzle flow was  assumed 
t o  develop on the  f lap as a boundary layer  completely  isolated from the primary 
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I I. 

m ix ing   reg ion   shear   f l ow  by t h e   j e t   p o t e n t i a l   c o r e .   T h i s  was considered 
a d e q u a t e ,   s i n c e   e x p e r i m e n t   v e r i f i e d   t h a t   t h e   g r a d i e n t - f r e e   p o t e n t i a l   c o r e  
p e r s i s t e d   w e l l   i n t o   t h e  wake, and t h e   f a r - f i e l d   p r e s s u r e  was t h e   c o n s t a n t  
a s s o c i a t e d   w i t h  a f r e e - j e t   f l o w   o v e r  a p lana r   su r face .  The f r e e - s h e a r   l a y e r  
m i x i n g   w i t h i n   t h e   p r i m a r y   r e g i o n  was i n i t i a l i z e d   u s i n g  a s t e p - p r o f i l e   i n  Gl 
as noted i n  F igu re  6, where the   upper  G1 e n t r a i n m e n t   v e l o c i t y  was es t imated  
from e x p e r i m e n t a l   d a t a   p r o f i l e s   a t  x,/h = 6.6, one-s tep   he igh t  downstream o f  
t h e   f l a p   t e r m i n u s   ( r e f .  38). These  boundary 1 ayer   and  p r imary   mix ing   reg ion  
solut ions  were  marched  downstream  and  then  matched  together a t   t h e   t r a i l i n g  
edge, x,/h = 5.6. A new s o l u t i o n  domain was s p e c i f i e d   t o  encompass the  two 
f lows,   p lus   the   lower   en t ra ined  f low,and a 2DPNS s o l u t i o n   i n i t i a l i z e d   t o   p r a -  
ceed i n t o   t h e  wake reg ion ,   see   F i   u re  6. Again,   the  lower   f reest ream G 1  
en t ra inmen t   ve loc i t y  was es t ima te  i f rom  data , and was assumed l a m i n a r   a t   t h e  
t r a i l i n g  e d g e .   B o u n d a r y   c o n d i t i o n s   f o r   i n d i v i d u a l   s o l u t i o n s   w i t h i n  each 
domain a re  a1 so n o t e d   i n   F i g u r e  6. 

Us ing  the 2DBL o p t i o n ,   t h e   f l a p  bound,ary l a y e r   f l o w  was s t a r t e d   f r o m   t h e  
assumed u n i f o r m   n o z z l e   p r o f i l e   b y   n u m e r i c a l   s o l u t i o n  O f  equc t i on  (52 )  f o r  Ci, 
assuming  laminar   f low  and  the  no-s l ip   boundary  condi t ion,  ul(xI, 0)  = 0. 
F o l l o w i n g   t h e   f e w   i n t e g r a t i o n   s t e p s   r e q u i r e d   t o   e s t a b l i s h   d e r i v a t i v e s ,   s o l u t i o n  
o f   e q u a t i o n  (51) was i n i t i a t e d   f o r   c o m p u t a t i o n   o f   t r a n s v e r s e   v e l o c i t y  G2, 
assuming a non-porous  surface.  Fol lowing a f e w   s t e p s   t o   a l l o w   e q u i l i b r a t i o n ,  
the  develop ing 1 aminar  boundary 1 ayer was t r i p p e d   t u r b u l e n t   b y   s i g n a l  1 i n g  
computation o f   e f f e c t i v e   v i s c o s i t y ,   e q u a t i o n  (50),  u s i n g   t h e  MLT model,  equa- 
t i o n  (55) .  The GI and G2 p r o f i l e s   t h e r e a f t e r   r a p i d l y   t r a n s f o r m   i n t o   t h e  
f a m i l i a r   t u r b u l e n t   p r o f i l e s .  The MLT s o l u t i o n  was marched a s h o r t   d i s t a n c e  
downstream,  whereupon k and E i n i t i a l   p r o f i l e s  were  computed u s i n g   t h e  
d u a l   d e f i n i t i o n s   f o r  v t  equat ions (48) and  (55). A r e s t a r t   o f   t h e   e n t i r e  
s o l u t i o n  was accompl ished,   and  the  turbulent   boundary  layer   a l lowed  to   develop 
t o   t h e   f l a p   t e r m i n u s   u s i n g   t h e  TKE c l o s u r e  model , equat ions ( 5 3 ) - (  54) .  The 
w a l l  damping i n f l u e n c e  was r e t a i n e d   w i t h i n   t h e  TKE s o l u t i o n   b y   o v e r - r i d i n g  
t h e  k and I l e v e l s ,  computed  from t h e   d i f f e r e n t i a l   e q u a t i o n   s o l u t i o n s ,   b y  
those computed from MLT a t   a l l  nodes l y i n g   i n s i d e   t h e   t r a n s i t i o n a l   l a y e r .  
I l l u s t r a t e d   i n   F i g u r e  7 i s   t h e  development o f   t h e   t u r b u l e n t   b o u n d a r y   l a y e r  
p r o f i l e   i n  terms o f   t h e  shape f a c t o r  H.  For a f u l l y  developed,   laminar   in-  
compress ib le   f l a t   p la te   boundary   l aye r ,  H = 2.6, w h i l e   f o r  a t u r b u l e n t   f l o w ,  
1.3 5 .H  5 1.6. The computed  development  spans the   range.  

The two-d imens iona l   shear   layer   computa t ion   w i th in   the 'p r imary   mix ing  
r e g i o n  was s i m i l a r l y   i n i t i a t e d  from a s l u g   s t a r t .  However, t h e  computed U1 
p r o f i l e   a t  x,/  h = 5.6 e x h i b i t e d  a  much l a r g e r   p o t e n t i a l   c o r e   t h a n   d i d   t h e  
exper imenta l   da ta   o f  x,/  h = 6.6. T h i s   i n d i c a t e s   t h a t   t h e   a s s o c i a t e d   t u r b u -  
l e n t   m i x i n g   w i t h i n   t h e   b l u n t  base  region a t  t he   nozz le   f ace  was gross ly   under -  
est imated  by  the  assumption  of  a t h i n   s h e a r   l a y e r .  An accurate  f low  charac- 
t e r i z a t i o n   i n   t h i s   r e g i o n   w o u l d   r e q u i r e  a complete  Navier -Stokes  so lut ion,  
w h i c h   c o u l d   a c c o u n t   f o r   r e c i r c u l a t i o n ,   a s   n o t e d   i n   t h e   d e v e l o p m e n t .  However, 
s ince   the   p r imary   focus  i s  on the   secondary   m ix ing   reg ion   evo lu t i on ,  and s i n c e  
experiment shows t h e   p r i m a r y   m i x i n g   r e g i o n   r e m a i n s   i s o l a t e d  downstream p a s t  
XI/ h = 6.6, t h e   f r e e - s h e a r   l a y e r   s o l u t i o n  was s imp ly   con t inued downstream 
a d i s t a n c e   s u f f i c i e n t   t o   e r o d e   t h e  span of t h e   p o t e n t i a l   c o r e   t o   e s s e n t i a l  
agreement w i t h   t h e   d a t a .  The n u m e r i c a l   p r o f i l e s   f o r  6 , u,, - k and E a t  one 
s l o t - h e i g h t   u p s t r e a m   o f   t h i s   l o c a t i o n   w e r e   t h e n  employea t o   i n i t i a l i z e   t h e  
combined wake s o l   u t i  on. 

34' 



L 
c, 
0 

1.5;- I I I B I I I I I I I 

0 1. 2. 3 .  4. 5. 6. 

Longitudinal  Coordinate - x l /h  

Fig. 7 Turbulent Boundary Layer Development Over Je t  Flap 

The developed  two-dimensional boundary layer and shear  layer  solutions 
ini t ia l ized  the 2DPNS solution on the combined domain a t  the   f lap  t ra i l ing 
edge. The boundary condition  specifications  are denoted i n  Figure 6.  Shown 
i n  Figure 8 are computed distributions of G1 a t  se lect  downstream s ta t ions ,  
shown in comparison t o  experimental d a t a  a t  x / h  = 6.6 .  Excellent agreement 
i s   i l l u s t r a t e d ,  with  the  sole  consequential  ditference a t  the wings of the 
G I  profi le  where t h e   j e t  merges w i t h  the  entrained  flow. Shown in  Fig. 9 
are corresponding computed distributions of turbulent  kinetic energy k ,  equa- 
tion  (13),  in  the primary and secondary mixing regions.  Illustrated  for com- 
parison i s   t he  measured normalized x1 component of the Re nolds s t r e s s ,  
-u '  u: ( r e f .  38, Fig. 2 4 ) .  Assuming isotropy, k and would  be 
direct ly  comparable. Agreement i s  good w i t h i n  the secondary mixing region, 
wherein the   i n i t i a l ly  small level a t  x , /  h = 5.6 has been consequentially 
increased by the  terminus of the  f lap.  Considerably  poorer agreement i s  
noted within  the primary mixing region, a d i rec t  consequence  of the  less 
accurate  starting  conditions  as  discussed. 

i J  

The i l lus t ra ted  agreement tends t o  'confirm the  validity o f  the wake flow 
in i t ia t ion  procedure as well a s  the  appropriateness of the ZDPNS equation 
system. While the flow regions  i l lustrated  are i m p o r t a n t ,  the  strong  inter- 
action zone immediately downstream of the  f lap terminus i s  of primary in te res t .  
The  extremum  mean flow gradients  exist  therein, bo th  in  the x1 and x p  coor- 
dinate  directions,  and the  corresponding  generation  rate of turbulence i s  
extremal. Shown i n  Figure 10 are  axial mean velocity G 1  profiles a t  various 
s ta t ions downstream of the  t ra i l ing edge. Note t h a t  the  initial  zero  level 
on the  f lap i s  rapidly  accelerated . t o  produce the  typical  shear  layer  prafiles. 
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Since a mean. flow .velocity  gradient i n  the x, direction  continuaTly  persists, 
turbulence  kinetic energy k i s  correspondingly  generated  well downstream of 
the  local x acceleration a t  the   t ra i l ing edge.  Corresponding computed dis- 
tr ibutions o f  turbulence  kinetic energy are  presented i n  Figure 11 a t  identical 
s ta t ions downstream of the  flap  terminus. Following the  in.itia1 maximum ac- 
celerat ion,   ' the  peak turbulence  kinetic energy  along a locus para1 le1  to  the 
f lap  i n  the wake continues t o  grow. The peak region broadens w i t h  distance 
downstream, and eventually  generates a stepped peak. As a direct  consequence 
there   resul ts  a pronounced overall  increase i n  the 1 eve1  of turbulence  within 
the  flowfield due t o  the  flap  terminating. 

. .  

Numerical evaluation of spatial  derivatives of ill and k i n  the wake 
region  could be employed in a noise model , for  example, equation (16) aug- 
mented for  the more general  case. The peak x ,  derivative of . c l  immediately 
downstream of the  f lap terminus i s  of the  order lo7, and decreases  rapidly 
t o  l o 4  one slot  height downstream. The up derivatives i n  the  x,direction, 
which contribute t o  the  shear  noise  term,  are  also maximum a t   t he   t r a i l i ng  
edge, rapidly  decrease, and then  continue t o  slowly  decrease as the flow  pro- 
ceeds downstream. Calculated  extremal  values of ai i l /ax,  in  the immediate 
wake are  the  order l o 6 ,  decrease  to lo5 a t  one slot  height and .5 x l o 5  
two slot   heights downstream. The turbulent  kinetic energy also  contributes, 
and the extremal x1 derivative of k i s  of order l o 7 .  Lateral x, 
derivatives of k are  also of order l o 7 ,  and pers is t  well downstream of the 
t r a i l i ng  edge,  as noted in  Fig. 11. Recall that,  as  discussed, a noise model 
may u t i l i ze   the  eddy  volume concept, the assumed-bounded region  over which 
a non-zero correlation  exists.  A length  scale  for  the eddy volume can be 
extracted from the computed turbulence  parameters,  see  equation (47 ) .  Extremum 
dissipation  lengths of .0075m and .0018m were calculated from the computed 
k and E dist r ibut ions.  They  compare favorably  with .0082m  and  .0036m, 
as  determined from experimental  longitudinal and  transverse  space  autocorrela- 
t i o n  by Tam and Reddy ( re f .   39) .  

Acoustically Modified Planar  Jet-Flap 

Treatment of an acoustica'lly "ha rd"  flap  surface  in  the form of homoge- 
neous or discrete  surface  porosity  is  experimentally  verified t o  a l t e r   f a r -  
f ie ld   acoust ic   intensi ty   (cf . ,   ref .   5 ,  10 ) .  An aerodynamically-acceptable 
procedure i s  to  replace  the hard f lap  with a mechanically-formed mesh surface, 
t h r o u g h  which  mass flaw can be induced by generation of modest pressure 
differences.  Attenuation of fa r - f ie ld  sound  power level may primarily  result 
from al terat ion of the  local  turbulent  flowfield, i n  particular-the mean flow 
local  shear  stress  distribution.  Surface  shear  is  basically a u l /  ax, ,  which 
i s   t he  dominant source mechanism in  unidirectional  shear  flows  (see  source 
terms i n  equations  (53)-(54)). I t  i s   a l s o  a mean flow contribution t o  the 
"shear-noise"  source term correlation  for  the  Lighthill  equation  soluti.on, 
for  example equation (16) .  The local  value of shear a t  the   f lap  t ra i l ing edge 
can be expected to   s ignif icant ly   affect   the   ra te  of momentum defect  attenua- 
t ion w i t h i n  the secondary mixing region, immediately downstream o f , t h e   t r a i l i n g  
edge,  see F i g .  6.  Therefore, i n  this  instance of interest,  surface  treatment 
appears to  induce  acoustic  modifications by al terat ion of the  local  detailed 
flowfield  structure. 
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A computational  simulation  of  the induced influence o f  surface  porosity 
is   particularly  direct ,   since  the  equivalent boundary condition  statement i s  
a controlling mechanism of  the numerical solution for the  flowfield. While 
the  actual mechanisms of pressure  coupling may be rather complex, an elemen- 
tary  extension of the two-dimensional configuration was evaluated t o  examine 
the fundamental phmomenon. The acoustic  surface  treatment can be  assumed 
correlated by an elementary form o f  Bernoulli ‘s equat ion .  

In equation (76)  , Ap is   the  pressure  difference  across  the porous surface, 
pwV, is   the   resul tant  induced colinear mass f l u x ,  and c i s  an experimental 
f r ic t ion   fac tor .  The pressure  difference  exists between the  exterior flow 
and a sub-surface  cavity, which undoubtedly  possesses a family of  acoustic 
waves travell ing a t  the  characteristic  cavity  frequencies. Hence, one expects 
t h a t  Ap i s  a distributed  function of  x i ;  dependent upon the  cited  factors,  
the induced Vw may  be of variable sign and magnitude. 

The concept was evaluated u s i n g  the  detailed  velocity  f ield  for  the 
Bradshaw relaxing flow t e s t  case as discussed i n  the Appendix. This s t anda rd  
case was altered by specification o f  a discrete and cyclic d i s t r i b u t i o n  of 
A p ( x l ) ,  equation (76 ) ,  as graphed i n  Figure 12a. The induced normal  mass 
f l u x  velocity, V acts   di rect ly  as a boundary condition for solution o f  u,, 
equation  (51),  any’indirectly  as a modification t o  the turbulence wall damp- 
i n g  f u n c t i o n ,  equations  (58)-(61). The flux  period was approximately 0.02m, 
the wave-form a h a t  function w i t h  peak value Vw/um = 0.001 ( i . e . ,  mass f l o w  
i n t o  the  cavity: , and the x1 span of  surface Oreatment was approximately 
0.15m.  The flowfield  variables were in i t ia l ized  from the  standard  case 
solution. Shown i n  Figure 1 2 b  i s  the computed x 1  dis t r ibut ion of  ii, , a t  
the f i rs t  f i n i t e  element node above the f l a p  surface  (located a t  x2 /$  = 
0.0013 , where 6 i s  the  local boundary layer  thickness) i n  comparison t o  
the  standard  case  results. This modest efflux  accelerates  the  local mean 
flow by up t o  about  l o % ,  w i t h  a corresponding  increase i n  aG,/ ax,. The 
period  appears equal to  the  applied  pressure wave, and the phase lags by 
about  one-quarter of  the period. The effective  turbulent  viscosity,  equation 
(50), computed a t  this node increased by approximately 8% a t  peak V, , which 
a l te rs   the  corresponding  value o f  k ,  equation (43)  , by a b o u t  15%. Reversal 
of  the sign of  Ap would induce deceleration of G I  by about  the same mag- 
nitude, and the  levels  of ve and k would be correspondingly  decreased. 
Elsewhere, away from the immediate v i c i n i t y  of the  surface,  the computed G 1  
profiles were unaffected by the wall phenomena for the  periodicity and 
amplitude  evaluated. These results  indicate t h a t  a very modest transverse 
mass f l u x ,  as induced by a pressure  difference  across a porous aerodynamic 
surface, can significantly  alter  the  local  detailed  structure of a turbulent 
boundary layer  flow. 

A corresponding  influence on the  local  source mechanisms for acoustic 
phenomena could  account  in some par t   for  measured a l te ra t ion  of fa r f ie ld  
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i n t e n s i t y   l e v e l s .  I n  p a r t i c u l a r ,   t h e   e x a c t   d i s t r i b u t i o n   o f  iil and k a t  
t h e   f l a p   t e r m i n u s ,  as a1 te red   by   t ransmiss ion   over   the   mod i f ied   f lap   sur face ,  
c o i r l d   b e   i m p o r t a n t   s i n c e   t h i s   f l o w   i n i t i a l i z e s   t h e   s e c o n d a r y   m i x i n g   r e g i o n .  
To assess  in f l .uences,   the  d iscussed  two-d imensional   hard  f lap  conf igurat ion 
o f   Sch recke r  and Maus ( r e f .  38) was c o m p u t a t i o n a l l y   a l t e r e d   t o   i n d u c e  a con- 
t i n u o u s   d i s t r i b u t i o n   o f   s u r f a c e   p o r o s i t y .  The wave form  approximated a s i n e  
w i th   amp l i t ude  V /U;= k 0.03  and  period Ax,/h = 0.04, where h i s   t h e  
s l o t   . n o z z l e  heigh!. I n   t h e  downstream f l a p   r e g i o n ,  5.0 2 xl/  h s 5.6, t h e  
s tandard  case  boundary  layer   f low was a p p r o a c h i n g   f u l l y   t u r b u l e n t   w i t h  a shape 
f a c t o r  H = 1.6, see  F igure 7 .  T h i s   f l o w  was r e r u n  wi th  t h e   c i t e d   p o r o s i t y  
d i s t r i b u t i o n   t o   d e t e r m i n e   t h e  ext remum  induced  modi f icat ions  to  H and t h e  
computed G I  d i r e c t l y  above t h e   f l a p   s u r f a c e .  The r e s u l t s   a r e  summarized i n  
Table 2. 

TABLE 2 

Poros i t y - Induced   Je t -F lap   F low f ie ld   Mod i f i ca t i ons  

. .  -~ 
Case I Ve l  o c i  ty  

II_ ~~ ~ 

! -1 

D e s c r i p t i o n  Shape Fac tor  
M 

Standard  (Hard)  0.092  1.63 

I n f l u x   ( S o f t )  +O .03 0.031  1.87 

Eff lux  (Soft)   -0.03  0.148  1.57 

The p e r i o d   o f   t h e   f l o w   a l t e r a t i o n s   a g r e e d   w i t h   t h e   s p e c i f i e d   i n f l u e n c e  and 
lagged i n  phase as d iscussed  for   the  check  case.  

A 2DPNS s o l u t i o n   i n   t h e   t r a i l i n g  edge wake was completed t o  assess  the , 

i n f l u e n c e   o f   i n d u c e d   f l o w f i e l d   m o d i f i c a t i o n s '  upon e v o l u t i o n   w i t h i n   t h e  
secondary   m ix ing   reg ion .   So lu t i ons   were   i n i t i a l i zed   us ing  mean f l o w   v e l o c i t y  
p r o f i l e s   f o r  cases 2 and  3, t h a t   d e p a r t e d   t h e   f u r t h e s t  f rom  the  standard 
case 1. Table 3 summar izes  the  resul ts  i n  te rms   o f   l ong i tud ina l  mean v e l o c i t y  
and   t u rbu lence   k ine t i c   ene rgy   a t   two   ve r t i ca l  (x,) l e v e l s  and a t   s e v e r a l  down- 
s t r e a m   s t a t i o n s .  Even though  the  porous  ef f lux  case 3 i s   i n i t i a l i z e d   w i t h  
l a r g e r  G1 , bo th   t he   s tandard  and i n f l u x  cases  produce  higher u" s o l u t i o n  
l e v e l s   b y  xl/h = 0.32. The s tandard  case  a lso  produces  ext rema]   leve ls   o f  
k a t   t h i s   s t a t i o n ,  e v e n   t h o u g h   t h e   i n i t i a l   l e v e l s   f o r   t h e   e f f l u x   c a s e  3 were 
f i v e   t i m e s   l a r g e r .   N o t e   t h a t   b y   x l / h  = 0.05 f o r   t h e   s t a n d a r d  case,  computed 
l e v e l s   f o r   b o t h  G 1  and k a re   app rox ima te l y   80%  o f   t hose   p red ic ted   a t  
xl/h = 0.32. Hence, t h e   i n i t i a l   t u r b u l e n c e   m i x i n g  phenomena w i t h i n   t h e  
s e c o n d a r y   m i x i n g   r e g i o n   o c c u r s   d i r e c t l y   a d j a c e n t   t o   t h e   f l a p   t r a i  1 i n g  edge, 
and appears q u i t e   s e n s i t i v e   t o   t h e   d e t a i l e d   s t r u c t u r e   o f   t h e   t u r b u l e n t   b o u n d a r y  
l a y e r   f l o w   a t   t h e   f l a p   t e r m i n u s .  
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TABLE 3 

Distribution of Mean Flow and Turbulence Velocities Within 

In i t ia l  Secondary Mixing  Region as Function of Simulated  Flap Surface  Porosity 

Coordinates - x i / h  

jownstream Vertical 
(i = 1) ( i  = 2)  

3.0 0.0014 

0.0 

D. 001 0.0014 

0.0 

0.05  0.0014 

0.0 

0.16 0.0014 

0.0 

0.32 0.0014 

0.0 

Mean Flow Velocity - u,/Uj 

Inf  1 ux S tanda rd  Eff 1 ux 
Case 2 Case 1 Case 3 

,031 .094 ,148 

.o .o .o 

.042 ,081 ,133 

,032 .050 .09 

- .344 - 
- ,320 - 

,336 .378 .362 

.327 .370 .355 

.389 .414 .378 

- 

.3a4  .408  .373 

Turbulence Kinetic Energy - k / U j 2  

Inf  1 ux Standard Efflux 
Case 2 Case 1 Case 3 

.o .o .o 

.0006 .0013 .0063 

.0005 .0020 .0044 

- .0358 - 
- .0368 - 

.0300 .045 1 .0376 

.0300 .0436 .0374 

,0331 .0431 .0382 

,0335 ,0431 .0382 

w 
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Recirculating Flow Within A Porous Slot 

The discussed  calculations confirm t h a t  transverse mass flux t h r o u g h  a 
porous flap  surface can produce significant changes in  the  detailed  structure 
of  the  attached  turbulent boundary layer  flow. The influence of porosity was 
exerted  only  indirectly on the f i r  solution th rough  the wall damping function 
and the G 2  boundary condition. Consequently, a computational evaluation was 
made of the  direct  influence  within  the immediate vicini ty  of a porous s l o t  
by numerical solution of the complete two-dimensional time-averaged  Navier- 
Stokes  system,  equations  (37),  (38) , and (65). 

The t e s t  geometry corresponds t o  the flow  over t h e   f i r s t   s l o t  of the 
standard  'case as exhibited  in  Figure 12a. Both mass addition and deletion 
through the  recessed base of the   s lo t  were evaluated. The solution domain 
geometry and boundary condition  specifications  are  illustrated  in  Figure 13. 
Shown a l so   i s  a representative  discretization,  illustrated  with  diagonals 
removed for  clari ty,   consisting of 304 f i n i t e  elements. The flow  proceeds 
over the   s lo t  from the   l e f t ,  and upstream and downstream boundary conditions 
were established from the boundary layer  solution using  equations  (35)-(36). 
Along the t o p  of the domain, the  gradient boundary condition on streamfunction 
a1 1 ows the flow t o  respond t o  the  cavity  presence, i .e.,   the  closure segment 
i s  not  forced t o  be a streaml.ine. Along the  cavity  base, Vw was assumed a 
linear  function of x 1  with a maximum efflux/influx of VwU,' = f 0.015. 

I I I ." "-3 _""""" L """""" 1 ""_ ~~ ~ ~~ 

@ = @out 
1 

= W o u t /  

F i g .  13. Finite Element Discretization And Boundary Conditions For 
Slot Region Recirculating Flow Analysis 
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The d e p t h   o f   t h e   s l o t  was approx imate ly  0.5% o f  6 t h e   l o c a l   b o u n d a r y   l a y e r  
th ickness .  The f low  Reynolds number based o n  6 and U, i s  lo5. The s l o t  
Reynolds  number  based  on  shear v e l o c i t y  , equat ion  (62)  , and s l o t  depth, was 24 , 
i n d i c a t i n g   t h a t   t h e   c o n t a i n e d   f l o w  was f u l l y  dominated  by  wall  damping. Hence, 
t h e   e f f e c t i v e   v i s c o s i t y  pe f o r   a l l  nodes w i t h i n   t h e  'slot was assumed laminar .  
MLT  was employed t o  compute v t  , equat ions  (55)-(64) , a t  a1 1 nodes  above t h e  
o r i g i n a l   p l a t e   s u r f a c e ,   a s   i n   t h e   s t a n d a r d   n o n - p o r o u s   s u r f a c e  case.  The top  
node  row o f   t h e   s o l u t i o n  domain l i e s   w i t h i n   t h e   f u l l y   t u r b u l e n t   f l o w .  

Computed s t e a d y   f l o w   s t r e a m l i n e   d i s t r i b u t i o n s   a r e  shown I n   F i g u r e  14a,b, 
. .  

f o r  mass removal  and mass a d d i t i o n   t h r o u g h   t h e   s l o t  base, respec t i ve l y .   Fo r  
bo th   cases ,   t he   f a r - f i e ld   s t reaml ines   a re  computed  concave  downward i n d i c a t i n g  
t h e  e f f e c t  of presence o f   t h e   s l o t  permeates t h e   e n t i r e  domain. Somewhat l e s s  
c o n c a v i t y   o c c u r s   f o r  mass a d d i t i o n   s i n c e   i d e n t i c a l   f a r f i e l d   s t r e a m l i n e   l e v e l s  
a r e   p l o t t e d   f o r  each  case. The d e t a i l e d   f l o w   s t r u c t u r e   i n   t h e   i m m e d i a t e  
v i c i n i t y   o f   t h e   s l o t  depends s t r o n g l y   o n   t h e   s i g n   o f  Vw. For mass removal, 
F igu re  14a, t h e   b o u n d a r y   f l o w , g e n e r a l l y   o v e r s h o o t s   t h e   s l o t  and c i r c l e s  back 
a long  the  base, e s t a b l i s h i n g  a c l o s e d   c i r c u l a t i o n   c o n t o u r   a t   t h e  downstream 
ex t remi t y .  Mass a d d i t i o n ,   F i g u r e  14b,   appears   cons t ra ined  to   the   s lo t   reg ion  
w i t h  emergence in to   the   ma in   boundary   f low  occur r ing   a t   the   downst ream  s tep  
face. Hence, w i th in   t he   assumpt i ve   cons t ra in t s   and   f o r   t he   spec i f i ed   boundary  
c o n d i t i o n s ,   t h e  more   comp le te   Nav ie r -S tokes   so lu t i ons   f u r the r   i l l us t ra te   t he  
c h a r a c t e r   o f   f l o w f i e l d   a l t e r a t i o n   i n d u c e d   b y  a porous  surface. These r e s u l t s  
a re  a t  b e s t   i n d i c a t i v e  however, s i n c e   t h e   f l o w   t h r o u g h   t h e   c a v i t y  base was 
s p e c i f i e d  a p r i o r i  , ra ther   than  be ing   coup led   to   resonance phenomena w i t h i n  a 
sub-surface  cavi ty.   Neverthel   ess , they  do con f i rm   the   po ten t i a l   capab i  1 i ty 
t o   n u m e r i c a l l y   e s t a b l i s h   d e t a i l e d   f l o w f i e l d   d a t a . o f   i m p a c t   i n   a n   a e r o a c o u s t i c  
ana lys i s .  

An Elementary  Three-Dimensional  Evaluation 

The d iscussed  numer ica l   eva lua t ions   a re   cons t ra ined  to   f lows  on   the  
symmetry p l a n e   o f  a th ree -d imens iona l   f l ow f ie ld .  The three-d imensional   f lows 
a s s o c i a t e d   w i t h   p r a c t i c a l  OTW c o n f i g u r a t i o n s   o n   a i r f o i l   s u r f a c e s ,   c f .  , F igure  
1, are  considerably  more  complex  than amenable t o   a n a l y s i s   u s i n g   t h e  employed 
equation  systems. However, f o r  a r e c t a n g u l a r   s l o t - n o z z l e - p l a n a r   j e t   f l a p  
geomet ry   w i th   qu iescent   f rees t ream,   such  as   tha t   o f   re f .  38, an e x p l o r a t o r y  
eva lua t i on  o f  t h e   p o t e n t i a l   o f  a three-d imensional   so lu t ion  can be es tab l i shed .  
Remaining w i t h i n   t h e   b o u n d a r y   l a y e r   o r d e r   o f   m a g n i t u d e   a n a l y s i s ,   e q u a t i o n  ( 3 4 ) ,  
a n d   f o r   t h e   u n i f o r m   f r e e s t r e a m   p r e s s u r e   f i e l d   a s s o c i a t e d   w i t h   r e c t i l i n e a r   f l o w  
over  a n o n - l i f t i n g   ' s u r f a c e ,   t h e  mean f l o w  between t h e   j e t  symmetry p lane  and a 
l a te ra l   f r ees t ream,  see F igu re  2, can  be  approximated t o   f i r s t   o r d e r  as p re-  
d o m i n a n t l y   b o u n d a r y   l a y e r   w i t h   n e g l i g i b l e   l a t e r a l   v e l o c i t y  ( u " ~ ) .  Correspond- 
i ng l y ,   t r ansve rse .mean   ve loc i t y  6, can  be i n i t i a l l y  de termined  over   the   f lap  
f rom  the   con t inu i t y   equa t ion   so lu t i on   equa t ion   (51 ) ,  and t h e r e a f t e r   b y   s o l u t i o n  
o f   the   th ree-d imens iona l  ii, momentum equat ion,   i .e .  , i = 2 i n  equat ion  (52) 
and us ing  equat ion  (50) .  
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a.   Steady Flow  Mass  Removal Through Cavity Base 
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b. Steady Flow  Mass Addition Through Cavity Base 

F i g .  14. Computed Steady Flow Streamline  Distr ibut ions For 
Turbulent Flow Over A Jet-Flap  Slot .  
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A f i n i t e  element discretization  ( less  diagonals) of the left-halE 
solution domain for  the  three-dimensional j e t   f l a p  of Figure 2 i s  shown i n  
Figure 15. Approximately 480 tr iangular elements are employed w i t h  non- 
uniformity  specified t o  resolve  the wall layer immediately adjacent t o  the 
upper and lower flap  surfaces. The boundary condition  constraints  for  the 
example solution  are noted as  well. As the flow departs the sharp t r a i l i ng  
edge, the  indicated wall boundary conditions  are removed, as  discussed  for 
the two-dimensional solutions.  A v a r i a n t  of the  s lug  s tar t  was  employed t o  
ini t ia l ize   the  solut ion  f ie ld  by interpolating  the computed  symmetry plane 
velocity  distribution  for ijl t o  a zero  level a t  the  lateral  freestream. 
Following in i t ia l iza t ion  and equilibration of the computed i i2  prof i les ,  
closure  for  turbulence was switched from MLT t o  TKE, and  the  solution marched 
downstream t o  a distance  sufficient t o  smooth the  solution  f ield.  The t r a i l -  
ing edge was assumed to   ex is t  a t  this  point and the solution  restarted  with 
the   f lap   ( i . e . ,  boundary conditions) removed t o  simulate emergence i n t o  the 
wake. 

Shown in F i g .  16 i s  a surface  representation of the computed equilibra- 
ted Cil distribution a t  the   f lap  t ra i l ing edge. The grid imposed on the 
soluti’on  surface is   ident ical  t o  the employed discretization which serves t o  
document appropriate  refinement. The g l  velocity beneath the  f lap  is  assumed 
zero, and the  additional  grid  detai 1 therein has been omitted  for  clarity. 
The  computed distribution of k a t  the   t ra i l ing  edge i s  shown in  Fig. 17a. 
The centroidal  spine i s  a consequence of the  lateral   derivatives of G l  , 
i . e . ,  a u , / a x ,  as produced by the  appropriate  contour  in  Fig. 16 which serves 
as a source  contribution  for  turbulence  kinetic  energy,  see  equation (53 ) .  
The peak d i rec t ly  above the  f lap  is   the  three-dimensional  equivalent of the 
results  i l lustrated  in  Fig.  9. The extent and location of the  f lap  is   noted, 
and the lower discret izat ion  detai l   i s  again  omitted.  Fig. 17b  i l l u s t r a t e s  
the computed k distFibution a t  A x l / h  = 0.02 downstream of the  flap 
terminus , as we1 1 as  the lower discret izat ion.  The surface shape i s  una1 tered 
everywhere except a t  the  elevation of the  flap  terminus where a sharply  spiked 
double peak has replaced  the  single peak i l lustrated  in  Fig.  17a.  Hence, the 
existence of the  t ra i l ing edge has resulted  in  rapid  production of turbulence 
kinetic energy  in agreement with the resul ts  of the symmetry plane  evaluation. 
These three-dimensional  predictions,  while  the  result of a highly  simplified 
analysis  for an elementary geometry, do confirm the  potential t o  extend the 
developed flowfield model t o  the  three-dimensional  configurations of practical 
interest .  
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Fig.  15. F i n i t e  E lement   Discret izat ion  For   Three-Dimensional   Solut ion 
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CONCLUDING REMARKS 

Simplified forms of the Navier-Stokes  equations for  des.cribing  aero- 
acoustic flows over a basic  jet-blown  flap  configuration have  been established. 
A f i n i t e  element  formalism i s  employed to   cas t  the identified  initial-boundary 
value  equation  systems for  steady, time-averaged turbulent  flows  into  equiv- 
alent  larger  order systems  of ordinary  differential  and/or  algebraic  equations. 
Numerical solutions were established us ing  the COMOC computer program. 
Computed evolution of the turbulent flow on the symmetry centerplane  of a 
rectangular  slot-nozzl  e-planar j e t   f l a p  geometry, and downstream of  the sharp- 
edged terminus  of the f l a p ,  compared favorably w i t h  experimental  .data. The 
influence of a porous treatment of the  flap  surface on the  detailed flow 
structure on and downstream of the  flap  terminus, was evaluated us ing  two 
equation  systems. An elementary  extension t o  a three-dimensional  flow con- 
figuration was evaluated. 

These results  generally confirm the  validity of the  suggested approach 
t o  characterization of the  turbulent  aeroacoustic  flows  associated w i t h  
d i r e c t e d - j e t   l i f t  augmentation  systems. In par t icular ,  use of the  parabolized 
approximation to   the  ful l  Navier-Stokes  system  appears  appropriate  for t u r b u -  
l en t  flows departing a sharp t r a i l i ng  edge of a planar  flap. Extension t o  a 
curved flap  surface  requires development of a more comprehensive equation 
system,  capable of computing pressure  distributions  in  the  plane  transverse 
to  the  direction of predominant flow. This system  should also be capable of 
predicting  the  entrainment induced by these  lateral  pressure  gradients. 
Analysis of aeroacoustic  flows  over  flaps  with a blunt  trail ing edge using 
the  parabolized  equation  systems is  inappropriate  in  regions  with flow  separa- 
t i o n  and recirculation. The present  results  indicate t h a t  the more complete 
analysis can be locally imbedded w i t h i n  a parabolic  solution. In this  instance,  
additional  attention i s  required t o  adequately accomplish closure  for t u r b u -  
lence phenomena in flow regions w i t h  small turbulence Reynolds number. 
Extension t o  these  areas should  render  the developed concepts  directly  appli- 
cable  to  aeroacoustic  flowfield  .determination  for  practical  lifting  configura- 
t i  ons . 
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APPENDIX 

In i t ia t ion  and Accuracy of Turbulent Flow Prediction 

A computational t e s t  program was completed t o  assess  factors  affecting 
solution  accuracy of turbulent boundary layer flows predicted using the 
f i n i t e  element solution a lgor i thm.  The standard two-dimensional boundary 
layer  equations ( 2 D B L )  are  a sub-set of  equations (51)- (54) ,  w i t h  equation 
(52) for j = 2 discarded and R = 2 only,el  sewhere.  Equations (53)-( 54) 
a re  solved for  the turbulent kinetic  energy (TKE) closure, us ing  equation (50) 
t o  evaluate  effective  viscosity. For mixing  length  theory (MLT), the t u r b u -  
lence  kinematic  viscosity i n  equation (50)  i s  determined algebraically u s i n g  
equation (55) .  

The three  eoaluations  required t o  a t t e s t  t o  s o l u t i o n  accuracy re la te   to  
verification o f  mathematical order-of-accuracy,  turbulent flow solution 
i n i t i a t i o n  from an assumed  mean-flow velocity  profile,  and the hybrid closure 
model employing MLT concepts w i t h i n  the wall layer  to  provide boundary con- 
d i t i o n s  for  the TKE s o l u t i o n .  Regarding the f i r s t  item,  confirmation of  a 
formal order-of-accuracy i s  currently  evaluable only for laminar  flows. The 
selected  test   case i s  laminar,  incompressible flow a t  zero exQernal pressure 
gradient,  the well known Blasius similari ty solution  (ref.   35).  The funda -  
mental e r ror  norm for  a f i n i t e  element solut ion  is   the  energy norm (c f .  , r e f .  
40) , defined for the 1 inear  equivalent of equatjon (66) - (67)  as 

r 1 

( A .  1) 

The ZDBL system is  n o t  l inear ,  b u t  the  non-linearity  exists i n  the  lower-order 
convection  terms only for laminar flow which would n o t  consti tute a quadratic 
contribution t o  equation ( A . 1 ) .  Assuming the v a l i d i t y  o f  equation ( A . l )  for 
the ZDBL system, and for use of  simplex f i n i t e  element functionals,  equation 
(71), convergence of the numerical so lu t ion  is  theore t ica l ly   ( re f .  40) , 

where C is  a constant  independent of  Lm , the measure of the smal i e s t  
f i n i t e  element  spanning R , and i i y  i s  the second x, derivative o f  il 
and assumed continuous on R .  Hence, under discretization  refinement, con- 
vergence  should be quadratic i n  the energy norm. Since  the  Galerkin c r i t e r i a  
for the   f in i te  element  algorithm,  equation (73) , renders  the  error orthogonal 
t o  the approximation  base,  the exponent of two i n  equation (A.2) can be 
numerically confirmed by measuring the   f in i te  element solution  energy,  equation 
(A.  1) 

1 M 
E(q*,q*) = d-c - hla(')qG2 d j  

3RmnaR 
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under   d i sc re t i za t i on   re f i nemen t .   I n   equa t ion   (A .3 ) ,  q;f, i s   t h e   f i n i t e  
e lement   approx imat ion  funct ional ,   equat ion (71), u l t i m a t e l y   e v a l u a t e d   i n  - terms o f   t h e  computed  nodal d i s t r i b u t i o n   o f   t h e  mean l o n g i t u d i n a l   v e l o c i t y  
UI(X,,X~). Shown i n   F i g .  A . l  i s   t h e  computed f i n i t e  element  solut ion  energy,  
equa-cion  (A.3),  evaluated a t  a s p e c i f i c   x 1   s t a t i o n   f o r  10 f M 5 80, where 
FI i s   t h e  nominal number o f   f i n i t e   e l e m e n t s   s p a n n i n g  R(x,) . The s l o p e   i s  
a l m o s t   i d e n t i c a l l y  two, i n d i c a t i n g   t h a t   t h e   e x p e c t e d   c o n v e r g e n c e   r a t e   i s  
achieved by the  computat ional  embodiment o f   t h e   a l g o r i t h m .  

d i s c r e t i z a t i o n .  However, a manda to ry   key   f ea tu re   f o r   t u rbu len t   f l ow  compu- 
t a t i o n s   i s   w e   o f   h i g h l y   n o n - u n i f o r m   d i s c r e t i z a t i o n s   t o   o b t a i n   s a t i s f a c t o r y  
c o m p u t a t i o n a l   e f f i c i e n c y  i n  c o n c e r t   w i t h   a c c e p t a b l e   s o l u t i o n   a c c u r a c y .  
Fo l l ow ing   numer i ca l   t es ts ,   so lu t i on  speed  and  accuracy  were  both  enhanced 
us ing  a f i n i t e  e l e m e n t   d i s c r e t i z a t i o n ,   v a r i a b l e  

The lam ina r   f l ow   resu l t s   were   ob ta ined   us ing  a u n i f o r m   f i n i t e   e l e m e n t  

a c c o r d i n g   t o  a geometric 
p rogress ion  as 

m+ l  j - 2  
nm+l = r l l + s c P  j =2 

In   equa t ion   (A .4 ) ,  r~,,+~ i s   t h e  extremum  nodal c o o r d i n a t e   o f  R, and n1 
i s   t h e   c o o r d i n a t e   o f   t h e   f i r s t  node o f   t h e   d i s c r e t i z a t i o n ,   t y p i c a l l y  zero: 
Furthermore, p i s   t h e   p r o g r e s s i o n   r a t i o   a n d .  s i s  a s c a l e   f a c t o r   t h a t  
a l lows  imbedding a g iven  number o f   f i n i t e  elements on R .  Shown i n   F i g .  A.2 
a r e   g r a p h s   o f   d i s c r e t i z a t i o n s   u s i n g   e q u a t i o n  (A.4) f o r   s e v e r a l   s / 6  and p .  
Curves A, C and D i l l u s t r a t e   u n i f o r m   d i s c r e t i z a t i o n s ;   t h e  header shows t h e  
corresponding number o f   f i n i t e  elements M spanning 6 and: 36 , where f r e e -  
stream  boundary  condi t ions  are  appl ied.   Curve B i l l u s t r a t e s  a modestly  non- 
u n i f o r m   g r i d ,   s u i t a b l e   f o r   l a m i n a r   f l o w   p r e d i c t i o n s .  Curve E i s   t h e   f i n i t e  
e lement   d isc re t i za t ion   de termined  by   numer ica l   exper iment   to   y ie ld  good 
s o l u t i o n   a c c u r a c y   f o r   t u r b u l e n t   f l o w   p r e d i c t i o n s   i n   c o n c e r t   w i t h   m i n i m a l  com- 
pu te r   t ime .  The f i n i t e  element a t   t h e   w a l l  spans 6 x y i e l d i n g   e x c e l l e n t  
r e s o l u t i o n ,   y e t   o n l y  28 f i n i t e  elements  are needed t o  span R = 36. 

Bas ic   so lu t i on   accu racy   f o r  a 2DBL t u r b u l e n t   f l o w  was evaluated  by com- 
p a r i s o n   o f  a z e r o   p r e s s u r e   g r a d i e n t ,   f l a t   p l a t e   c o m p u t a t i o n   t o   t h e   e x p e r i m e n t a l  
d a t a   o f   W i e g h a r d t   ( c f . ,   r e f .  36, Vol. 11, IDENT 1400). S o l u t i o n   i n i t i a t i o n  
was accompl ished  assuming  existence  of  a u n i f o r m  u, p r o f i l e   a t   t h e   p l a t e  
l e a d i n g  edge. p d  t h e  MLT c l o s u r e  model . Boundary   cond i t i ons   a t   t he   P la te  
su r face   a re  u, = u, = 0; a t   f r e e s t r e a m ,  x./6 = 3 , the   van ish ing   g rad ien t  was 
imposed, 2iil /  ax,= 0. The i n i t i a l   d i s t r i b u t i o n  far  u2 was zero   s ince  
261/ 2 x l =  0 upstream o f   t h e   p l a t e .   T h i s   s p e c i f i c a t i o n   c o r r e s p o n d s  t o  a 
"s fug-s ta r t , "   the   method employed t o   i n i t i a t e   s o l u t i o n s   i n   t h e  absence o f  any 
p r e f e r a b l e   a l t e r n a t i v e .   S i n c e   t h e   t u r b u l e n t   R e y n o l d s  number o f   t he   W ieghard t  
case i s   i n i t i a l l y   s m a l l ,   t r a n s i t i o n   f r o m   l a m i n a r   t o   t u r b u l e n t   f l o w   o c c u r s  
over  a f i n i t e  span o f  x . The r e s u l t s   o f   c o m p u t a t i o n a l   e x p e r i m e n t a t i o n   w i t h  
the   sw i t ch   f rom  l am ina r  t o  t u r b u l e n t   f l o w   i s  shown i n   F i g .  A.3, i n  terms  of 
sk in   f r i c t . i o r !   ob ta ined   f rom  wa l l   shear   by   non -d imens iona l i za t i on   w i th  +pa U; 9 

see equat ion  (63). The compar~san'exper~menta7 resu l t s .were   ob ta ined  -from 
d a t a   u s i n g   i n t e r p o l a t i o n  and the  Ludwieg-Ti l lman  formula,   equat ion ( 6 4 ) .  I n  
each  case, t h e   f l o w  was computed laminar  t o  t h e   s e l e c t e d   t r a n s i t i o n   p o i n t ,  

- 
- 
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WIEGHARDT FLAT  PLATE FLOW (IDENT 1400) 

t 

I 1 I "1 L I I I 

lo-* 10" 100 
Longi tud ina l   Coord inate - x1 (m) 

lo1 

Fig .   A .3   Trans i t ion   Locat ion   In f luence on Sk in   Fr ic t ion ,   Wieghard t   F la t   P la te  Flow, MLT 



and no t ransi t ion model was employed to  alter  the  intermediate  profiles.  The 
family of  computed resu l t s   a re  bracketed by the d a t a ,  and by x, = 0.6m the 
var ious me2hods are  i n  essential  agreement.  Corresponding comparison of 
computed u1 velocity  profiles t o  d a t a  indicate  excellent  agreement,  see F i g .  
A.4. These resul ts  confirm the  slug start  solut ion  ini t ia t ion procedure for  
the  selected  planar  jet-flap  evaluations. 

The third  requirement, t o  a t tes t   solut ion accuracy using the hybrid TKE- 
MLT closure model, was evaluated u s i n g  as a comparison basis  the  experimental 
d a t a  of Bradshaw ( r e f .  36, Vol. 11, IDENT 2400). Shown in  Fig. A.5 are com- 
puted ij, veloci ty   prof i le   dis t r ibut ions,   i l lust rat ing the agreement w i t h  
data  at tainable using the MLT closure model. Overall,  the comparison i s  quite 
good, although  diffusional  processes w i t h i n  t h e   f l a t  mid-range appear high as 
evidenced by the computed resul ts  uniformly  exceeding the d a t a .  These differ-  
ences  diminish fur ther  downstream, b u t  there   i s  a corresponding  trend t o  
underpredict  the f i r s t  knee i n  the  curve. Shown in  Fig. A.6 i s  the same  com- 
par i son  to  d a t a  with resul ts  computed using  the TKE closure model. In the 
wall dominated viscous  sub-layer, MLT was employed to  compute near-wall 
boundary values of k and E , for  numerical solution of equations (53)- (54) .  
As previously  mentioned,  the MLT evaluation  also  yields  the  init ial   distri-  
butions  for k and E. A vanishing normal gradient  for k and E was 
enforced a t  the  freestream, and computed agreement w i t h  d a t a  i s  comparable 
t o  the complete MLT run. Detailed  differences do ex is t  however, as i l lus t ra ted  
i n  Fig. A.7, on the  multiple comparison bases of boundary layer  integral 
parameters. The TKE colution does tend to  overpredict b o t h  displacement and 
momentum thickness  in comparison t o  the MLT solution. Otherwise  the resul ts  
are  quite comparable and confirm the basic  concept of the hybrid closure model 
f o r  in i t ia t ion  of a parabolic  solution  in  the wake downstream  of a sharp 
t r a i l i ng  edge. 
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WIEGHARDT FLAT PLATE FLOW (IDENT 1400) 
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BRADSHAW RELAX1 NG FLOW ( IDENT 2400) 
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BRADSHAW RELAXING FLOW (IDENT 2400) 
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